Aspects of diffusion in the stadium billiard

被引:8
|
作者
Lozej, Crt [1 ]
Robnik, Marko [1 ]
机构
[1] Univ Maribor, CAMTP, Mladinska 3, SI-2000 Maribor, Slovenia
关键词
HYDROGEN-ATOM; QUANTUM LOCALIZATION; MAGNETIC-FIELD; SPECTRUM; RESONANCES; STATISTICS; CHAOS;
D O I
10.1103/PhysRevE.97.012206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a detailed numerical study of diffusion in the epsilon stadium of Bunimovich, and propose an empirical model of the local and global diffusion for various values of epsilon with the following conclusions: (i) the diffusion is normal for all values of epsilon (<= 0.3) and all initial conditions, (ii) the diffusion constant is a parabolic function of the momentum (i.e., we have inhomogeneous diffusion), (iii) the model describes the diffusion very well including the boundary effects, (iv) the approach to the asymptotic equilibrium steady state is exponential, (v) the so-called random model (Robnik et al., 1997) is confirmed to apply very well, (vi) the diffusion constant extracted from the distribution function in momentum space and the one derived from the second moment agree very well. The classical transport time, an important parameter in quantum chaos, is thus determined.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] UNSTABLE PERIODIC-ORBITS IN THE STADIUM BILLIARD
    BIHAM, O
    KVALE, M
    PHYSICAL REVIEW A, 1992, 46 (10): : 6334 - 6339
  • [22] How chaotic is the stadium billiard? A semiclassical analysis
    Tanner, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : 2863 - 2888
  • [23] NONGENERIC SPECTRAL STATISTICS IN THE QUANTIZED STADIUM BILLIARD
    SIEBER, M
    SMILANSKY, U
    CREAGH, SC
    LITTLEJOHN, RG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22): : 6217 - 6230
  • [24] Scars of periodic orbits in the stadium action billiard
    Ortiz, JSE
    deAguiar, MAM
    deAlmeida, AMO
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) : 275 - 287
  • [25] VERTICAL MOTION AND SCARRED EIGENFUNCTIONS IN THE STADIUM BILLIARD
    CHRISTOFFEL, KM
    BRUMER, P
    PHYSICAL REVIEW A, 1985, 31 (05): : 3466 - 3467
  • [26] NONINTEGRABLE STADIUM BILLIARD SEEN AS MIRROR CABINET
    KRUELLE, CA
    KITTEL, A
    HUEBENER, RP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1993, 48 (10): : 1039 - 1040
  • [27] UNIVERSALITY AND NONUNIVERSALITY OF LEVEL STATISTICS IN THE STADIUM BILLIARD
    SHUDO, A
    SHIMIZU, Y
    PHYSICAL REVIEW A, 1990, 42 (10): : 6264 - 6267
  • [28] DISTRIBUTION OF EIGENMODES IN A SUPERCONDUCTING STADIUM BILLIARD WITH CHAOTIC DYNAMICS
    GRAF, HD
    HARNEY, HL
    LENGELER, H
    LEWENKOPF, CH
    RANGACHARYULU, C
    RICHTER, A
    SCHARDT, P
    WEIDENMULLER, HA
    PHYSICAL REVIEW LETTERS, 1992, 69 (09) : 1296 - 1299
  • [29] ROLE OF THE EDGE ORBITS IN THE SEMICLASSICAL QUANTIZATION OF THE STADIUM BILLIARD
    ALONSO, D
    GASPARD, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (05): : 1599 - 1607
  • [30] The Distribution of Localization Measures of Chaotic Eigenstates in the Stadium Billiard
    Batistic, B.
    Lozej, C.
    Robnik, M.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2020, 23 (01): : 17 - 32