Aspects of diffusion in the stadium billiard

被引:8
|
作者
Lozej, Crt [1 ]
Robnik, Marko [1 ]
机构
[1] Univ Maribor, CAMTP, Mladinska 3, SI-2000 Maribor, Slovenia
关键词
HYDROGEN-ATOM; QUANTUM LOCALIZATION; MAGNETIC-FIELD; SPECTRUM; RESONANCES; STATISTICS; CHAOS;
D O I
10.1103/PhysRevE.97.012206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a detailed numerical study of diffusion in the epsilon stadium of Bunimovich, and propose an empirical model of the local and global diffusion for various values of epsilon with the following conclusions: (i) the diffusion is normal for all values of epsilon (<= 0.3) and all initial conditions, (ii) the diffusion constant is a parabolic function of the momentum (i.e., we have inhomogeneous diffusion), (iii) the model describes the diffusion very well including the boundary effects, (iv) the approach to the asymptotic equilibrium steady state is exponential, (v) the so-called random model (Robnik et al., 1997) is confirmed to apply very well, (vi) the diffusion constant extracted from the distribution function in momentum space and the one derived from the second moment agree very well. The classical transport time, an important parameter in quantum chaos, is thus determined.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Quantitative study of scars in the boundary section of the stadium billiard
    Simonotti, FP
    Vergini, E
    Saraceno, M
    PHYSICAL REVIEW E, 1997, 56 (04): : 3859 - 3867
  • [32] STATISTICAL PROPERTIES OF UNSTABLE PERIODIC-ORBITS IN THE STADIUM BILLIARD
    AKIYAMA, S
    KOGA, S
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1995, 28 : S384 - S389
  • [33] An Upper Bound on Topological Entropy of the Bunimovich Stadium Billiard Map
    Jernej Činč
    Serge Troubetzkoy
    Journal of Statistical Physics, 190
  • [34] Numerical study of a three-dimensional generalized stadium billiard
    Papenbrock, T
    PHYSICAL REVIEW E, 2000, 61 (04) : 4626 - 4628
  • [35] Chaotic dynamics of the elliptical stadium billiard in the full parameter space
    Lopac, V.
    Mrkonjic, I.
    Pavin, N.
    Radic, D.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 217 (01) : 88 - 101
  • [36] Experimental versus numerical eigenvalues of a Bunimovich stadium billiard:: A comparison
    Alt, H
    Dembowski, C
    Gräf, HD
    Hofferbert, R
    Rehfeld, H
    Richter, A
    Schmit, C
    PHYSICAL REVIEW E, 1999, 60 (03): : 2851 - 2857
  • [37] LONG-TIME SEMICLASSICAL DYNAMICS OF CHAOS - THE STADIUM BILLIARD
    TOMSOVIC, S
    HELLER, EJ
    PHYSICAL REVIEW E, 1993, 47 (01): : 282 - 299
  • [38] An Upper Bound on Topological Entropy of the Bunimovich Stadium Billiard Map
    Cinc, Jernej
    Troubetzkoy, Serge
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (08)
  • [39] REACTION DYNAMICS IN A NON-ERGODIC SYSTEM - THE SIAMESE STADIUM BILLIARD
    DELEON, N
    BERNE, BJ
    CHEMICAL PHYSICS LETTERS, 1982, 93 (02) : 169 - 173
  • [40] Fractal conductance fluctuations in a soft-wall stadium and a Sinai billiard
    Sachrajda, AS
    Ketzmerick, R
    Gould, C
    Feng, Y
    Kelly, PJ
    Delage, A
    Wasilewski, Z
    PHYSICAL REVIEW LETTERS, 1998, 80 (09) : 1948 - 1951