Multiple Classifier Systems for More Accurate Java']JavaScript Malware Detection

被引:0
|
作者
Yi, Zibo [1 ]
Ma, Jun [1 ]
Luo, Lei [1 ]
Yu, Jie [1 ]
Wu, Qingbo [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China
关键词
machine learning; !text type='Java']Java[!/text]Script malware detection; multiple classifier system;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The researches of JavaScript malware detection focus on machine learning techniques in recent years. These works extract features from JavaScript's abstract syntax tree for the training of classifiers and achieve satisfactory detection results. However, in the training set there exist some scripts that are not so representative and may cause occasional incorrect classification. We propose multiple classifier system (MCS) to reduce this kind of misclassification. As shown in the experiments, the accuracy increases because of the MCS while training time is slightly greater than the original classifier.
引用
收藏
页码:139 / 143
页数:5
相关论文
共 50 条
  • [41] DCEL:classifier fusion model for Android malware detection
    XU Xiaolong
    JIANG Shuai
    ZHAO Jinbo
    WANG Xinheng
    [J]. Journal of Systems Engineering and Electronics, 2024, 35 (01) : 163 - 177
  • [42] Iterative Classifier Fusion System for the Detection of Android Malware
    Abawajy, Jemal H.
    Kelarev, Andrei
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2019, 5 (03) : 282 - 292
  • [43] Malicious Java']JavaScript Detection Based on Bidirectional LSTM Model
    Song, Xuyan
    Chen, Chen
    Cui, Baojiang
    Fu, Junsong
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (10):
  • [44] LeakSpot: detection and diagnosis of memory leaks in Java']JavaScript applications
    Rudafshani, Masoomeh
    Ward, Paul A. S.
    [J]. SOFTWARE-PRACTICE & EXPERIENCE, 2017, 47 (01): : 97 - 123
  • [45] McPAD: A multiple classifier system for accurate payload-based anomaly detection
    Perdisci, Roberto
    Ariu, Davide
    Fogla, Prahlad
    Giacinto, Giorgio
    Lee, Wenke
    [J]. COMPUTER NETWORKS, 2009, 53 (06) : 864 - 881
  • [46] Andrana: Quick and Accurate Malware Detection for Android
    Bedford, Andrew
    Garvin, Sebastien
    Desharnais, Josee
    Tawbi, Nadia
    Ajakan, Hana
    Audet, Frederic
    Lebel, Bernard
    [J]. FOUNDATIONS AND PRACTICE OF SECURITY, FPS 2016, 2017, 10128 : 20 - 35
  • [47] Obfuscated Malicious Java']Javascript Detection using Classification Techniques
    Likarish, Peter
    Jung, Eunjin E. J.
    Jo, Insoon
    [J]. 2009 4TH INTERNATIONAL CONFERENCE ON MALICIOUS AND UNWANTED SOFTWARE (MALWARE 2009), 2009, : 47 - +
  • [48] Practical AJAX Race Detection for Java']JavaScript Web Applications
    Adamsen, Christoffer Quist
    Moller, Anders
    Alimadadi, Saba
    Tip, Frank
    [J]. ESEC/FSE'18: PROCEEDINGS OF THE 2018 26TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2018, : 38 - 48
  • [49] Accurate mobile malware detection and classification in the cloud
    Wang, Xiaolei
    Yang, Yuexiang
    Zeng, Yingzhi
    [J]. SPRINGERPLUS, 2015, 4
  • [50] Clone Detection Techniques for Java']JavaScript and Language Independence: Review
    Alfageh, Danyah
    Alhakami, Hosam
    Baz, Abdullah
    Alanazi, Eisa
    Alsubait, Tahani
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (04) : 787 - 795