Andrana: Quick and Accurate Malware Detection for Android

被引:3
|
作者
Bedford, Andrew [1 ]
Garvin, Sebastien [1 ]
Desharnais, Josee [1 ]
Tawbi, Nadia [1 ]
Ajakan, Hana [1 ]
Audet, Frederic [2 ]
Lebel, Bernard [2 ]
机构
[1] Univ Laval, Quebec City, PQ, Canada
[2] Thales Res & Technol Canada, Quebec City, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Malware detection; Android; Static analysis; Machine learning;
D O I
10.1007/978-3-319-51966-1_2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to protect Android users and their information, we have developed a lightweight malware detection tool for Android called ANDRANA. It leverages machine learning techniques and static analysis to determine, with an accuracy of 94.90%, if an application is malicious. Its analysis can be performed directly on a mobile device in less than a second and using only 12MB of memory.
引用
收藏
页码:20 / 35
页数:16
相关论文
共 50 条
  • [1] Quick and Accurate Android Malware Detection Based on Sensitive APIs
    Zhao, Chunlei
    Zheng, Wenbai
    Gong, Liangyi
    Zhang, Mengzhe
    Wang, Chundong
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SMART INTERNET OF THINGS (SMARTIOT 2018), 2018, : 143 - 148
  • [2] BRIDEMAID: An Hybrid Tool for Accurate Detection of Android Malware
    Martinelli, Fabio
    Mercaldo, Francesco
    Saracino, Andrea
    [J]. PROCEEDINGS OF THE 2017 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIA CCS'17), 2017, : 899 - 901
  • [3] Towards Accurate Labeling of Android Apps for Reliable Malware Detection
    Salem, Aleieldin
    [J]. PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY '21), 2021, : 269 - 280
  • [4] Mining Frequent Patterns for Scalable and Accurate Malware Detection System in Android
    Thi-Tra-My Nguyen
    Dong-Son Nguyen
    Van Tong
    Duc Tran
    Hai-Anh Tran
    Mellouk, Abdelhamid
    [J]. 2018 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2018, : 370 - 375
  • [5] Deep Android Malware Detection
    McLaughlin, Niall
    del Rincon, Jesus Martinez
    Kang, BooJoong
    Yerima, Suleiman
    Miller, Paul
    Sezer, Sakir
    Safaei, Yeganeh
    Trickel, Erik
    Zhao, Ziming
    Doup, Adam
    Ahn, Gail Joon
    [J]. PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 301 - 308
  • [6] Detection of Repackaged Android Malware
    Shahriar, Hossain
    Clincy, Victor
    [J]. 2014 9TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2014, : 349 - 354
  • [7] TRENDS IN ANDROID MALWARE DETECTION
    Shaerpour, Kaveh
    Dehghantanha, Ali
    Mahmod, Ramlan
    [J]. JOURNAL OF DIGITAL FORENSICS SECURITY AND LAW, 2013, 8 (03) : 21 - 40
  • [8] Smart malware detection on Android
    Gheorghe, Laura
    Marin, Bogdan
    Gibson, Gary
    Mogosanu, Lucian
    Deaconescu, Razvan
    Voiculescu, Valentin-Gabriel
    Carabas, Mihai
    [J]. SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (18) : 4254 - 4272
  • [9] Android Fragmentation in Malware Detection
    Long Nguyen-Vu
    Ahn, Jinung
    Jung, Souhwan
    [J]. COMPUTERS & SECURITY, 2019, 87
  • [10] Android malware detection model
    Yang, Hongyu
    Na, Yuzhuo
    [J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 45 - 51