Multiple Classifier Systems for More Accurate Java']JavaScript Malware Detection

被引:0
|
作者
Yi, Zibo [1 ]
Ma, Jun [1 ]
Luo, Lei [1 ]
Yu, Jie [1 ]
Wu, Qingbo [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China
关键词
machine learning; !text type='Java']Java[!/text]Script malware detection; multiple classifier system;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The researches of JavaScript malware detection focus on machine learning techniques in recent years. These works extract features from JavaScript's abstract syntax tree for the training of classifiers and achieve satisfactory detection results. However, in the training set there exist some scripts that are not so representative and may cause occasional incorrect classification. We propose multiple classifier system (MCS) to reduce this kind of misclassification. As shown in the experiments, the accuracy increases because of the MCS while training time is slightly greater than the original classifier.
引用
收藏
页码:139 / 143
页数:5
相关论文
共 50 条
  • [21] Detection of Obfuscated Malicious Java']JavaScript Code
    Alazab, Ammar
    Khraisat, Ansam
    Alazab, Moutaz
    Singh, Sarabjot
    [J]. FUTURE INTERNET, 2022, 14 (08):
  • [22] TeJaS: Retrofitting Type Systems for Java']JavaScript
    Lerner, Benjamin S.
    Politz, Joe Gibbs
    Guha, Arjun
    Krishnamurthi, Shriram
    [J]. ACM SIGPLAN NOTICES, 2014, 49 (02) : 1 - 15
  • [23] Multiple Classifier Systems for Image Forgery Detection
    Cozzolino, Davide
    Gargiulo, Francesco
    Sansone, Carlo
    Verdoliva, Luisa
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 259 - 268
  • [24] Building a practical and reliable classifier for malware detection
    Vatamanu, Cristina
    Gavrilut, Dragos
    Benchea, Razvan-Mihai
    [J]. JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2013, 9 (04): : 205 - 214
  • [25] Archival Crawlers and Java']JavaScript: Discover More Stuff but Crawl More Slowly
    Brunelle, Justin F.
    Weigle, Michele C.
    Nelson, Michael L.
    [J]. 2017 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL 2017), 2017, : 1 - 10
  • [26] Partial evaluation of string obfuscations for Java']Java malware detection
    Chawdhary, Aziem
    Singh, Ranjeet
    King, Andy
    [J]. FORMAL ASPECTS OF COMPUTING, 2017, 29 (01) : 33 - 55
  • [27] Building a Machine Learning Classifier for Malware Detection
    Markel, Zane
    Bilzor, Michael
    [J]. 2014 SECOND WORKSHOP ON ANTI-MALWARE TESTING RESEARCH (WATER), 2014, : 20 - 23
  • [28] Building a practical and reliable classifier for malware detection
    Cristina Vatamanu
    Dragoş Gavriluţ
    Răzvan-Mihai Benchea
    [J]. Journal of Computer Virology and Hacking Techniques, 2013, 9 (4) : 205 - 214
  • [29] Accurate Malware Detection by Extreme Abstraction
    Copty, Fady
    Danos, Matan
    Edelstein, Orit
    Eisner, Cindy
    Murik, Dov
    Zeltser, Benjamin
    [J]. 34TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2018), 2018, : 101 - 111
  • [30] Obfuscated Malicious Java']JavaScript Detection by Machine Learning
    Pan, Jinkun
    Mao, Xiaoguang
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS (AMEII 2016), 2016, 73 : 805 - 810