Midwave infrared InAs/GaSb superlattice photodiode with a dopant-free p-n junction

被引:3
|
作者
Delmas, M. [1 ,2 ]
Rodriguez, J. B. [1 ,2 ]
Taalat, R. [1 ,2 ]
Konczewicz, L. [3 ,4 ]
Desrat, W. [3 ,4 ]
Contreras, S. [3 ,4 ]
Giard, E. [5 ]
Ribet-Mohamed, I. [5 ]
Christol, P. [1 ,2 ]
机构
[1] Univ Montpellier, IES, UMR 5214, F-34000 Montpellier, France
[2] CNRS, IES, UMR 5214, F-34000 Montpellier, France
[3] Univ Montpellier, L2C, UMR 5221, F-34000 Montpellier, France
[4] CNRS, L2C, UMR 5221, F-34000 Montpellier, France
[5] Off Natl Etud & Rech Aerosp, F-91761 Palaiseau, France
关键词
InAs/GaSb superlattice; Photodiode; Dark current; Midwave infrared;
D O I
10.1016/j.infrared.2014.09.036
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Midwave infrared (MWIR) InAs/GaSb superlattice (SL) photodiode with a dopant-free p-n junction was fabricated by molecular beam epitaxy on GaSb substrate. Depending on the thickness ratio between InAs and GaSb layers in the SL period, the residual background carriers of this adjustable material can be either n-type or p-type. Using this flexibility in residual doping of the SL material, the p-n junction of the device is made with different non-intentionally doped (nid) SL structures. The SL photodiode processed shows a cut-off wavelength at 4.65 mu m at 77 K, residual carrier concentration equal to 1.75 x 10(15) cm(-3), dark current density as low as 2.8 x 10(-8) A/cm(2) at 50 mV reverse bias and R(0)A product as high as 2 x 10(6) Omega cm(2). The results obtained demonstrate the possibility to fabricate a SL pin photodiode without intentional doping the pn junction. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 80
页数:5
相关论文
共 50 条
  • [11] Transport measurements on InAs/GaSb superlattice structures for mid-infrared photodiode
    Cervera, C.
    Perez, J. P.
    Chaghi, R.
    Rodriguez, J. B.
    Christol, P.
    Konczewicz, L.
    Contreras, S.
    16TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON 16), 2009, 193
  • [12] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
    刘家丰
    张宁涛
    滕䶮
    郝修军
    赵宇
    陈影
    朱赫
    朱虹
    吴启花
    李欣
    陈佰乐
    黄勇
    Chinese Physics B, 2020, 29 (11) : 537 - 540
  • [13] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
    Liu, Jia-Feng
    Zhang, Ning-Tao
    Teng, Yan
    Hao, Xiu-Jun
    Zhao, Yu
    Chen, Ying
    Zhu, He
    Zhu, Hong
    Wu, Qi-Hua
    Li, Xin
    Chen, Bai-Le
    Huang, Yong
    CHINESE PHYSICS B, 2020, 29 (11)
  • [14] Lateral p-n Junction in an Inverted InAs/GaSb Double Quantum Well
    Karalic, Matija
    Mittag, Christopher
    Tschirky, Thomas
    Wegscheider, Werner
    Ensslin, Klaus
    Ihn, Thomas
    PHYSICAL REVIEW LETTERS, 2017, 118 (20)
  • [15] Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors
    Giard, E.
    Ribet-Mohamed, I.
    Jaeck, J.
    Viale, T.
    Haidar, R.
    Taalat, R.
    Delmas, M.
    Rodriguez, J. -B.
    Steveler, E.
    Bardou, N.
    Boulard, F.
    Christol, P.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (04)
  • [16] Midwavelength infrared avalanche photodiode using InAs-GaSb strain layer superlattice
    Mallick, S.
    Banerjee, K.
    Ghosh, S.
    Rodriguez, J. B.
    Krishna, S.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (21-24) : 1843 - 1845
  • [18] Carrier lifetime studies in midwave infrared type-II InAs/GaSb strained layer superlattice
    Klein, Brianna
    Gautam, Nutan
    Plis, Elena
    Schuler-Sandy, Ted
    Rotter, Thomas J.
    Krishna, Sanjay
    Connelly, Blair C.
    Metcalfe, Grace D.
    Shen, Paul
    Wraback, Michael
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2014, 32 (02):
  • [19] Silicon photodiode with a grid p-n junction
    Blynskii, V. I.
    Vasileuskii, Yu. G.
    Malyshev, S. A.
    Chizh, A. L.
    SEMICONDUCTORS, 2007, 41 (02) : 223 - 226
  • [20] Silicon photodiode with a grid p-n junction
    V. I. Blynskii
    Yu. G. Vasileuskii
    S. A. Malyshev
    A. L. Chizh
    Semiconductors, 2007, 41 : 223 - 226