The Fourier Restriction and Kakeya Problems over Rings of Integers Modulo N

被引:10
|
作者
Hickman, Jonathan [1 ]
Wright, James [2 ]
机构
[1] Univ Chicago, Dept Math, Eckhart Hall Room 414,5734 S Univ Ave, Chicago, IL 60637 USA
[2] Room 4621,James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
基金
美国国家科学基金会;
关键词
Fourier restriction; Kakeya; Congruence equations; EXTENSION-THEOREMS; RECENT PROGRESS; VECTOR-SPACES; FINITE; SETS; CURVES; CONJECTURES; TRANSFORMS; FAMILIES; SURFACES;
D O I
10.19086/da.3682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Fourier restriction phenomenon and the size of Kakeya sets are explored in the setting of the ring of integers modulo N for general N and a striking similarity with the corresponding euclidean problems is observed. One should contrast this with known results in the finite field setting.
引用
收藏
页码:1 / 54
页数:54
相关论文
共 50 条
  • [21] Secure Computation over Integers Modulo Powers of Two
    Abspoel, Mark
    Cramer, Ronald
    Escudero, Daniel
    [J]. ERCIM NEWS, 2021, (126): : 23 - 23
  • [22] Classes of modulo powers in S-integers rings of body of functions
    Car, M
    [J]. ACTA ARITHMETICA, 2005, 118 (02) : 149 - 185
  • [23] Clean group rings over localizations of rings of integers
    Li, Yuanlin
    Zhong, Qinghai
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (07)
  • [24] Counting Integers Representable as Images of Polynomials Modulo n
    Arias, Fabian
    Borja, Jerson
    Rubio, Luis
    [J]. JOURNAL OF INTEGER SEQUENCES, 2019, 22 (06)
  • [25] Prime and irreducible elements of the ring of integers modulo n
    Jafari, M.
    Madadi, A.
    [J]. MATHEMATICAL GAZETTE, 2012, 96 (536): : 283 - 287
  • [26] IMPRIMITIVE REGULAR ACTION IN THE RING OF INTEGERS MODULO n
    Han, Juncheol
    Lee, Yang
    Park, Sangwon
    [J]. CONTEMPORARY RING THEORY 2011, 2012, : 182 - 195
  • [27] Distribution of αn plus β modulo 1 over integers free from large and small primes
    Yau, Kam Hung
    [J]. ACTA ARITHMETICA, 2019, 189 (01) : 95 - 107
  • [28] KAKEYA SETS OVER NON-ARCHIMEDEAN LOCAL RINGS
    Dummit, Evan P.
    Hablicsek, Marton
    [J]. MATHEMATIKA, 2013, 59 (02) : 257 - 266
  • [29] The Polychromatic Number of Small Subsets of the Integers Modulo n
    Curl, Emelie
    Goldwasser, John
    Sampson, Joe
    Young, Michael
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [30] ON THE ORDER OF ODD INTEGERS MODULO 2n
    Jung, Soon-Mo
    Nam, Doyun
    Rassias, Michael Th
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (02) : 619 - 631