IMPRIMITIVE REGULAR ACTION IN THE RING OF INTEGERS MODULO n

被引:0
|
作者
Han, Juncheol [1 ]
Lee, Yang [1 ]
Park, Sangwon [2 ]
机构
[1] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
[2] Pusan Natl Univ, Dept Math, Pusan 604714, South Korea
关键词
Regular group action; orbit; faithful; fixed-point free;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n be any positive integer and Z(n) = {0, 1,...,n - 1} be the ring of integers modulo n. Let X-n be the set of all nonzero, nonunits of Z(n), and G(n) the group of all units of Z(n). In this paper, by considering the regular representation pi : G(n) -> Sym(X-n), the following are investigated as follows: (1) G(n) is not fixed-point free; (2) If Fix(g) = {x is an element of X-n : gx = x} not equal empty set for some g is an element of G(n), then Fix(g) is a union of orbits under the regular action of G(n) on X-n; (3) B(subset of o(x(1)) U ... U o(x(l))) is a set of imprimitivity under pi for some orbits o(x(1)),..., o(x(l)) if and only if B = g(1)H(1)x(1)U...Ug(l)H(l)x(l) for some subgroups H-1,.., H-l of G(n) and some elements, g(1),..., g(l) is an element of G(n) satisfying that if (gB) boolean AND B not equal empty set for some g is an element of G, then g is an element of stab(x(i))H-i for each i = 1,...,l.
引用
收藏
页码:182 / 195
页数:14
相关论文
共 50 条
  • [1] On graphs associated to ring of Guassian integers and ring of integers modulo n
    Pirzada, S.
    Bhat, M. Imran
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2022, 14 (01) : 75 - 83
  • [2] Some Remarks on Regular Integers Modulo n
    Apostol, Bradut
    Toth, Laszlo
    [J]. FILOMAT, 2015, 29 (04) : 687 - 701
  • [3] Prime and irreducible elements of the ring of integers modulo n
    Jafari, M.
    Madadi, A.
    [J]. MATHEMATICAL GAZETTE, 2012, 96 (536): : 283 - 287
  • [4] On the Zero Divisor Graphs of the Ring of Lipschitz Integers Modulo n
    José María Grau
    Celino Miguel
    Antonio M. Oller-Marcén
    [J]. Advances in Applied Clifford Algebras, 2017, 27 : 1191 - 1202
  • [5] On the Zero Divisor Graphs of the Ring of Lipschitz Integers Modulo n
    Maria Grau, Jose
    Miguel, Celino
    Oller-Marcen, Antonio M.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1191 - 1202
  • [6] On full differential uniformity of permutations on the ring of integers modulo n
    Mishra, P. R.
    Gupta, Prachi
    Gaur, Atul
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (02) : 301 - 319
  • [7] The cubic mapping graph for the ring of Gaussian integers modulo n
    Yangjiang Wei
    Jizhu Nan
    Gaohua Tang
    [J]. Czechoslovak Mathematical Journal, 2011, 61 : 1023 - 1036
  • [8] On full differential uniformity of permutations on the ring of integers modulo n
    P. R. Mishra
    Prachi Gupta
    Atul Gaur
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2023, 34 : 301 - 319
  • [9] ZERO DIVISOR GRAPH FOR THE RING OF GAUSSIAN INTEGERS MODULO n
    Abu Osba, Emad
    Al-Addasi, Salah
    Abu Jaradeh, Nafiz
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (10) : 3865 - 3877
  • [10] The Zero-divisor Graph of the Ring of Integers Modulo n
    Pi, Seung Jun
    Kim, Se Hun
    Lim, Jung Wook
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (04): : 591 - 601