ON THE ORDER OF ODD INTEGERS MODULO 2n

被引:0
|
作者
Jung, Soon-Mo [1 ]
Nam, Doyun [2 ]
Rassias, Michael Th [3 ,4 ,5 ]
机构
[1] Hongik Univ, Math Sect, Coll Sci & Technol, Sejong 30016, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[3] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[4] Moscow Inst Phys & Technol, Inst Skiy,D 9, Dolgoprudnyi 141700, Russia
[5] Inst Adv Study, Program Interdisciplinary Studies, 1 Einstein Dr, Princeton, NJ 08540 USA
基金
新加坡国家研究基金会;
关键词
Order of odd integers; primitive root; Euler totient function;
D O I
10.2298/AADM190326023J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the order of odd integers of the forms 2(j)u + 1 and 2(j)u + 3 modulo 2(n), where j is an integer with j >= 2, u is an odd positive integer, and n is an integer with n >= j + 3.
引用
收藏
页码:619 / 631
页数:13
相关论文
共 50 条
  • [1] Some aspects of zero-divisor graphs for the ring of Gaussian integers modulo 2n
    Sinha, Deepa
    Kaur, Bableen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 69 - 81
  • [2] EULER NUMBERS MODULO 2n
    Sun, Zhi-Hong
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) : 221 - 231
  • [3] On the order of unimodular matrices modulo integers
    Kurlberg, P
    ACTA ARITHMETICA, 2003, 110 (02) : 141 - 151
  • [4] Correction to: On positive integers n with σl(2n + 1) < σl(2n)
    Rui-Jing Wang
    Yong-Gao Chen
    Periodica Mathematica Hungarica, 2022, 85 (1) : 225 - 225
  • [5] ODD ORDER HALL SUBGROUPS OF GL(N,Q) AND SP(2N,Q)
    GROSS, F
    MATHEMATISCHE ZEITSCHRIFT, 1984, 187 (02) : 185 - 194
  • [6] On the design of modulo 2n±1 adders
    Efstathiou, C
    Vergos, HT
    Nikolos, D
    ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 517 - 520
  • [7] On integers n for which σ - (2n+1) ≥ σ (2n)
    Kobayashi, Mits
    Trudgian, Tim
    JOURNAL OF NUMBER THEORY, 2020, 215 : 138 - 148
  • [8] Linear approximations of addition modulo 2n
    Wallén, Johan
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2003, 2887 : 261 - 273
  • [9] Linear approximations of addition modulo 2n
    Wallén, J
    FAST SOFTWARE ENCRYPTION, 2003, 2887 : 261 - 273
  • [10] Efficient modulo 2n ± 1 squarers
    Bakalis, D.
    Vergos, H. T.
    Spyrou, A.
    INTEGRATION-THE VLSI JOURNAL, 2011, 44 (03) : 163 - 174