ON THE ORDER OF ODD INTEGERS MODULO 2n

被引:0
|
作者
Jung, Soon-Mo [1 ]
Nam, Doyun [2 ]
Rassias, Michael Th [3 ,4 ,5 ]
机构
[1] Hongik Univ, Math Sect, Coll Sci & Technol, Sejong 30016, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[3] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[4] Moscow Inst Phys & Technol, Inst Skiy,D 9, Dolgoprudnyi 141700, Russia
[5] Inst Adv Study, Program Interdisciplinary Studies, 1 Einstein Dr, Princeton, NJ 08540 USA
基金
新加坡国家研究基金会;
关键词
Order of odd integers; primitive root; Euler totient function;
D O I
10.2298/AADM190326023J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the order of odd integers of the forms 2(j)u + 1 and 2(j)u + 3 modulo 2(n), where j is an integer with j >= 2, u is an odd positive integer, and n is an integer with n >= j + 3.
引用
收藏
页码:619 / 631
页数:13
相关论文
共 50 条
  • [31] On positive integers n with σl(2n+1) < σl(2n)
    Wang, Rui-Jing
    Chen, Yong-Gao
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (01) : 210 - 224
  • [33] MODULO (2n plus 1) ARITHMETIC LOGIC.
    Agrawal, Dharma P.
    Rao, Thammavaram R.N.
    1978, 2 (06): : 186 - 188
  • [34] On the Design of Modulo 2n±1 Subtractors and Adders/Subtractors
    E. Vassalos
    D. Bakalis
    H. T. Vergos
    Circuits, Systems, and Signal Processing, 2011, 30 : 1445 - 1461
  • [35] A universal sequence of integers generating balanced Steinhaus figures modulo an odd number
    Chappelon, Jonathan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (01) : 291 - 315
  • [36] REGULAR VLSI ARCHITECTURES FOR MULTIPLICATION MODULO (2N + 1)
    CURIGER, AV
    BONNENBERG, H
    KAESLIN, H
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1991, 26 (07) : 990 - 994
  • [37] EFFICIENT METHOD FOR DESIGNING MODULO {2n ± k} MULTIPLIERS
    Pettenghi, Hector
    Cotofana, Sorin
    Sousa, Leonel
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2014, 23 (01)
  • [38] Designing of area and power efficient modulo 2N multiplier
    Shalini, R. V.
    Sampath, P.
    2014 3RD INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS (ICECCS 2014), 2014, : 246 - 249
  • [39] Modulo deflation in (2n+1,2n, 2n-1) converters
    Bi, S
    Wang, W
    Al-Khalili, A
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, 2004, : 429 - 432
  • [40] Weight of an n-dimensional Boolean vector and addition modulo 2n; The generalization to the case of modulo mn
    Sevastyanov, B.A.
    Discrete Mathematics and Applications, 5 (04):