Unified approach for multiple sclerosis lesion segmentation on brain MRI

被引:99
|
作者
Sajja, BR
Datta, S
He, RJ
Mehta, M
Gupta, RK
Wolinsky, JS
Narayana, PA
机构
[1] Univ Texas, Sch Med, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA
[2] Sanjay Gandhi Postgrad Inst Med Sci, Dept Radiodiagnosis, Lucknow 226014, Uttar Pradesh, India
[3] Univ Texas, Sch Med, Dept Neurol, Houston, TX 77030 USA
关键词
segmentation; feature classification; multiple sclerosis; expectation maximization; hidden Markov random field; MRI;
D O I
10.1007/s10439-005-9009-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The presence of large number of false lesion classification on segmented brain MR images is a major problem in the accurate determination of lesion volumes in multiple sclerosis (MS) brains. In order to minimize the false lesion classifications, a strategy that combines parametric and nonparametric techniques is developed and implemented. This approach uses the information from the proton density (PD)- and T2-weighted and fluid attenuation inversion recovery (FLAIR) images. This strategy involves CSF and lesion classification using the Parzen window classifier. Image processing, morphological operations, and ratio maps of PD- and T2-weighted images are used for minimizing false positives. Contextual information is exploited for minimizing the false negative lesion classifications using hidden Markov random field-expectation maximization (HMRF-EM) algorithm. Lesions are delineated using fuzzy connectivity. The performance of this algorithm is quantitatively evaluated on 23 MS patients. Similarity index, percentages of over, under, and correct estimations of lesions are computed by spatially comparing the results of present procedure with expert manual segmentation. The automated processing scheme detected 80% of the manually segmented lesions in the case of low lesion load and 93% of the lesions in those cases with high lesion load.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 50 条
  • [41] Contrast-Enhanced Image Analysis for MRI Based Multiple Sclerosis Lesion Segmentation
    Sahnoun, Mouna
    Kallel, Fathi
    Dammak, Mariem
    Kammoun, Omar
    Mhiri, Chokri
    Ben Mahfoudh, Kheireddine
    Ben Hamida, Ahmed
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [42] The influence of slice orientation on brain MRI lesion load measurement in multiple sclerosis
    Rovaris, M
    Sormani, MP
    Rocca, MA
    Comi, G
    Filippi, M
    MULTIPLE SCLEROSIS, 1997, 3 (06): : 382 - 384
  • [43] Correlation between brain MRI lesion volume and disability in patients with multiple sclerosis
    Mammi, S
    Filippi, M
    Martinelli, V
    Campi, A
    Colombo, B
    Scotti, G
    Canal, N
    Comi, G
    ACTA NEUROLOGICA SCANDINAVICA, 1996, 94 (02): : 93 - 96
  • [44] BRAIN MRI ESTIMATES OF TRUE MACROSCOPIC LESION LOADS IN MULTIPLE-SCLEROSIS
    MAMMI, S
    FILIPPI, M
    HORSFIELD, MA
    CAMPI, A
    PEREIRA, C
    COLOMBO, B
    SCOTTI, G
    COMI, G
    NEUROLOGY, 1995, 45 (04) : A399 - A399
  • [45] An Automatic Multiple Sclerosis Lesion Segmentation Approach based on Cellular Learning Automata
    Moghadasi, Mohammad
    Fazekas, Gabor
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (07) : 178 - 183
  • [46] Evaluation of two automated lesion segmentation and filling pipelines for brain tissue segmentation of multiple sclerosis patients
    Valverde, S.
    Oliver, A.
    Roura, E.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrenta, L.
    Sastre-Garriga, J.
    Montalban, X.
    Rovira, A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2015, 21 : 177 - 178
  • [47] Deep 2D Encoder-Decoder Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation in Brain MRI
    Aslani, Shahab
    Dayan, Michael
    Murino, Vittorio
    Sona, Diego
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 132 - 141
  • [48] MRI Interpolation for Multiple Sclerosis Lesion Quantification
    Farias, Fabian Ricardo
    Klein, Pedro Costa
    Soder, Ricardo Bernardi
    Becker, Jefferson
    Pinho, Marcio Sarroglia
    PROCEEDINGS 2016 IEEE 40TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS (COMPSAC), VOL 2, 2016, : 633 - 636
  • [49] Physiologic MRI of a tumefactive multiple sclerosis lesion
    Ernst, T
    Chang, L
    Walot, I
    Huff, K
    NEUROLOGY, 1998, 51 (05) : 1486 - 1488
  • [50] Automated brain tissue and lesion segmentation in multiple sclerosis: A feasibility study in the state of Salzburg
    Varosanec, M.
    Marschallinger, R.
    Karamyan, A.
    Sellner, J.
    Oppermann, K.
    Golaszewski, S. M.
    Wipfler, P.
    McCoy, M. R.
    Trinka, E.
    EUROPEAN JOURNAL OF NEUROLOGY, 2017, 24 : 429 - 430