Deep 2D Encoder-Decoder Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation in Brain MRI

被引:15
|
作者
Aslani, Shahab [1 ,2 ]
Dayan, Michael [1 ]
Murino, Vittorio [1 ,3 ]
Sona, Diego [1 ,4 ]
机构
[1] Ist Italiano Tecnol IIT, Pattern Anal & Comp Vis PAVIS, Genoa, Italy
[2] Univ Genoa, Sci & Technol Elect & Telecommun Engn, Genoa, Italy
[3] Univ Verona, Dipartimento Informat, Verona, Italy
[4] Fdn Bruno Kessler, Neurolnformat Lab, Trento, Italy
关键词
Segmentation; Multiple sclerosis; Convolutional neural network;
D O I
10.1007/978-3-030-11723-8_13
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In this paper, we propose an automated segmentation approach based on a deep two-dimensional fully convolutional neural network to segment brain multiple sclerosis lesions from multimodal magnetic resonance images. The proposed model is made as a combination of two deep subnetworks. An encoding network extracts different feature maps at various resolutions. A decoding part upconvolves the feature maps combining them through shortcut connections during an upsampling procedure. To the best of our knowledge, the proposed model is the first slice-based fully convolutional neural network for the purpose of multiple sclerosis lesion segmentation. We evaluated our network on a freely available dataset from ISBI MS challenge with encouraging results from a clinical perspective.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [1] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [2] Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction
    Ines Njeh
    Hiba Mzoughi
    Mohamed Ben Slima
    Ahmed Ben Hamida
    Chokri Mhiri
    Kheireddine Ben Mahfoudh
    [J]. Medical & Biological Engineering & Computing, 2021, 59 : 85 - 106
  • [3] Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction
    Njeh, Ines
    Mzoughi, Hiba
    Ben Slima, Mohamed
    Ben Hamida, Ahmed
    Mhiri, Chokri
    Ben Mahfoudh, Kheireddine
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (01) : 85 - 106
  • [4] Skin lesion segmentation using an improved framework of encoder-decoder based convolutional neural network
    Kaur, Ranpreet
    GholamHosseini, Hamid
    Sinha, Roopak
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (04) : 1143 - 1158
  • [5] Iterative Deep Convolutional Encoder-Decoder Network for Medical Image Segmentation
    Kim, Jung Uk
    Kim, Hak Gu
    Ro, Yong Man
    [J]. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 685 - 688
  • [6] Deep Convolutional Encoder-Decoder Network with Model Uncertainty for Semantic Segmentation
    Isobe, Shuya
    Arai, Shuichi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 365 - 370
  • [7] Seismic Stratum Segmentation Using an Encoder-Decoder Convolutional Neural Network
    Wang, Detao
    Chen, Guoxiong
    [J]. MATHEMATICAL GEOSCIENCES, 2021, 53 (06) : 1355 - 1374
  • [8] Brain stroke classification and segmentation using encoder-decoder based deep convolutional neural networks
    Yalcin, Sercan
    Vural, Huseyin
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [9] Deep Convolutional Encoder-Decoder for Myelin and Axon Segmentation
    Mesbah, Rassoul
    McCane, Brendan
    Mills, Steven
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2016, : 226 - 231
  • [10] An encoder-decoder deep neural network for binary segmentation of seismic facies
    Lima, Gefersom
    Zeiser, Felipe Andre
    Da Silveira, Ariane
    Rigo, Sandro
    Ramos, Gabriel de Oliveira
    [J]. COMPUTERS & GEOSCIENCES, 2024, 183