Deep 2D Encoder-Decoder Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation in Brain MRI

被引:15
|
作者
Aslani, Shahab [1 ,2 ]
Dayan, Michael [1 ]
Murino, Vittorio [1 ,3 ]
Sona, Diego [1 ,4 ]
机构
[1] Ist Italiano Tecnol IIT, Pattern Anal & Comp Vis PAVIS, Genoa, Italy
[2] Univ Genoa, Sci & Technol Elect & Telecommun Engn, Genoa, Italy
[3] Univ Verona, Dipartimento Informat, Verona, Italy
[4] Fdn Bruno Kessler, Neurolnformat Lab, Trento, Italy
关键词
Segmentation; Multiple sclerosis; Convolutional neural network;
D O I
10.1007/978-3-030-11723-8_13
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In this paper, we propose an automated segmentation approach based on a deep two-dimensional fully convolutional neural network to segment brain multiple sclerosis lesions from multimodal magnetic resonance images. The proposed model is made as a combination of two deep subnetworks. An encoding network extracts different feature maps at various resolutions. A decoding part upconvolves the feature maps combining them through shortcut connections during an upsampling procedure. To the best of our knowledge, the proposed model is the first slice-based fully convolutional neural network for the purpose of multiple sclerosis lesion segmentation. We evaluated our network on a freely available dataset from ISBI MS challenge with encouraging results from a clinical perspective.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [31] Cloud and Snow Segmentation in Satellite Images Using an Encoder-Decoder Deep Convolutional Neural Networks
    Zheng, Kai
    Li, Jiansheng
    Ding, Lei
    Yang, Jianfeng
    Zhang, Xucheng
    Zhang, Xun
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (07)
  • [32] Fig Plant Segmentation from Aerial Images Using a Deep Convolutional Encoder-Decoder Network
    Fuentes-Pacheco, Jorge
    Torres-Olivares, Juan
    Roman-Rangel, Edgar
    Cervantes, Salvador
    Juarez-Lopez, Porfirio
    Hermosillo-Valadez, Jorge
    Manuel Rendon-Mancha, Juan
    [J]. REMOTE SENSING, 2019, 11 (10)
  • [33] A deep Convolutional Encoder-Decoder Network for Page Segmentation of Historical Handwritten Documents into Text Zones
    Kaddas, Panagiotis
    Gatos, Basilis
    [J]. PROCEEDINGS 2018 16TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2018, : 259 - 264
  • [34] OverSegNet: A convolutional encoder-decoder network for image over-segmentation
    Li, Peng
    Ma, Wei
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2023, 107
  • [35] Automatic segmentation of intracerebral hemorrhage in CT images using encoder-decoder convolutional neural network
    Hu, Kai
    Chen, Kai
    He, Xizhi
    Zhang, Yuan
    Chen, Zhineng
    Li, Xuanya
    Gao, Xieping
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (06)
  • [36] Brain MRI Super-Resolution Using 3D Dilated Convolutional Encoder-Decoder Network
    Du, Jinglong
    Wang, Lulu
    Liu, Yulu
    Zhou, Zexun
    He, Zhongshi
    Jia, Yuanyuan
    [J]. IEEE ACCESS, 2020, 8 : 18938 - 18950
  • [37] Convolutional Neural Network Approach for Multiple Sclerosis Lesion Segmentation
    Messaoud, Nada Haj
    Mansour, Asma
    Ayari, Rim
    Ben Abdallah, Asma
    Aissi, Mouna
    Frih, Mahbouba
    Bedoui, Mohamed Hedi
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2022, 2022, 13756 : 540 - 548
  • [38] Background Subtraction Using Encoder-Decoder Structured Convolutional Neural Network
    Lim, Kyungsun
    Jang, Won-Dong
    Kim, Chang -Su
    [J]. 2017 14TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2017,
  • [39] An Efficient Encoder-Decoder CNN for Brain Tumor Segmentation in MRI Images
    Dheepa, G.
    Chithra, P. L.
    [J]. IETE JOURNAL OF RESEARCH, 2023, 69 (12) : 8647 - 8658
  • [40] A Multilayer Convolutional Encoder-Decoder Neural Network for Grammatical Error Correction
    Chollampatt, Shamil
    Hwee Tou Ng
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 5755 - 5762