An Efficient Encoder-Decoder CNN for Brain Tumor Segmentation in MRI Images

被引:0
|
作者
Dheepa, G. [1 ]
Chithra, P. L. [1 ]
机构
[1] Univ Madras, Dept Comp Sci, Chennai 600025, Tamil Nadu, India
关键词
Brain tumor; Encoder-Decoder Convolutional Neural Network; Feature visualization; Magnetic Resonance Imaging (MRI); Segmentation; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.1080/03772063.2022.2098182
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An improved Encoder-Decoder Convolutional Neural Network (CNN) architecture is proposed for segmenting brain tumors in Magnetic Resonance Imaging (MRI). It consists of three encoding and decoding blocks. In the first encoding block, each input slice is convolved separately with two different filters and processed into upcoming encoding and decoding blocks for extracting the hierarchy of tumoral features. These are classified using softmax and compared with ground truth for evaluating performance. Experimental results were evaluated based on training and validation images in BRATS-2012, BRATS-2013 and BRATS-2018 datasets, which achieved 46.7%, 30.4% and 5.7% higher dice scores, respectively, compared to the existing segmentation methods.
引用
收藏
页码:8647 / 8658
页数:12
相关论文
共 50 条
  • [1] Efficient segmentation and classification of the tumor using improved encoder-decoder architecture in brain MRI images
    Ingle, Archana
    Sankhe, Manoj
    Roja, Mani
    Patkar, Deepak
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (08) : 643 - 651
  • [2] Efficient MRI Brain Tumor Segmentation Using Multi-resolution Encoder-Decoder Networks
    Soltaninejad, Mohammadreza
    Pridmore, Tony
    Pound, Michael
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 30 - 39
  • [3] Encoder-Decoder Network for Brain Tumor Segmentation on Multi-sequence MRI
    Iantsen, Andrei
    Jaouen, Vincent
    Visvikis, Dimitris
    Hatt, Mathieu
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 296 - 302
  • [4] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [5] SCNet: A Simplified Encoder-Decoder CNN for Semantic Segmentation
    Yasrab, Robail
    Gu, Naijie
    Zhang, Xiaoci
    PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2016, : 785 - 789
  • [6] SU-Net: An Efficient Encoder-Decoder Model of Federated Learning for Brain Tumor Segmentation
    Yi, Liping
    Zhang, Jinsong
    Zhang, Rui
    Shi, Jiaqi
    Wang, Gang
    Liu, Xiaoguang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 761 - 773
  • [7] MRI Breast Tumor Segmentation Using Different Encoder and Decoder CNN Architectures
    El Adoui, Mohammed
    Mahmoudi, Sidi Ahmed
    Larhmam, Mohamed Amine
    Benjelloun, Mohammed
    COMPUTERS, 2019, 8 (03)
  • [8] Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution
    Jia, Zhongdao
    Yuan, Zhimin
    Peng, Jialin
    MULTIMODAL BRAIN IMAGE ANALYSIS AND MATHEMATICAL FOUNDATIONS OF COMPUTATIONAL ANATOMY, 2019, 11846 : 130 - 138
  • [9] Brain Tumor Segmentation using an Encoder-Decoder Network with a Multiscale Feature Module
    Prieto-Ordaz, Olanda
    Ramirez-Alonso, Graciela
    Gonzalez, Luis C.
    Lopez-Santillan, Roberto
    Montes-y-Gomez, Manuel
    PROCEEDINGS OF THE XXII 2020 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2020), VOL 4, 2020,
  • [10] Encoder-decoder semantic segmentation models for pressure wound images
    Eldem, Huseyin
    Ulker, Erkan
    Isikli, Osman Yasar
    IMAGING SCIENCE JOURNAL, 2022, 70 (02): : 75 - 86