Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution

被引:3
|
作者
Jia, Zhongdao [1 ]
Yuan, Zhimin [1 ]
Peng, Jialin [1 ]
机构
[1] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain tumor segmentation; Hierarchical separable convolution; Contextual information;
D O I
10.1007/978-3-030-33226-6_15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To address automatic segmentation of brain tumor from multi-modal MRI volumes, a light-weight encoder-decoder network is presented. Exploring effective way to trade off the range of spatial contexts and computational efficiency is crucial to address challenges of 3D segmentation. To this end, we introduce hierarchical separable convolution (HSC), an integration of view- and group-wise separable convolution, which can simultaneously encode multi-scale context in 3D and reduce memory overhead without sacrificing accuracy. Specifically, typical 3D convolution is replaced with complementary 2D convolutions at multiple scales and thus multiple fields-of-view, which results in a light-weight but stronger model. Moreover, thanks to the decomposed convolutions, we ensemble 3D segmentations with different focal views to further improve segmentation accuracy. Experiments on the BRATS 2017 benchmark showed that our method achieved state-of-the-art performance in Dice, i.e., 0.901, 0.809 and 0.762 for the whole tumor, tumor core and enhancing tumor core, respectively.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 50 条
  • [1] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [2] Brain Tumor Segmentation using an Encoder-Decoder Network with a Multiscale Feature Module
    Prieto-Ordaz, Olanda
    Ramirez-Alonso, Graciela
    Gonzalez, Luis C.
    Lopez-Santillan, Roberto
    Montes-y-Gomez, Manuel
    [J]. PROCEEDINGS OF THE XXII 2020 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2020), VOL 4, 2020,
  • [3] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [4] An Efficient Encoder-Decoder CNN for Brain Tumor Segmentation in MRI Images
    Dheepa, G.
    Chithra, P. L.
    [J]. IETE JOURNAL OF RESEARCH, 2023, 69 (12) : 8647 - 8658
  • [5] The Modified Encoder-decoder Network Based on Depthwise Separable Convolution for Water Segmentation of Real Sar Imagery
    Zhang, Peipei
    Wang, Guanjun
    [J]. 2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1, 2019,
  • [6] Human Conversation Analysis Using Attentive Multimodal Networks with Hierarchical Encoder-Decoder
    Gu, Yue
    Li, Xinyu
    Huang, Kaixiang
    Fu, Shiyu
    Yang, Kangning
    Chen, Shuhong
    Zhou, Moliang
    Marsic, Ivan
    [J]. PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 537 - 545
  • [7] Efficient segmentation and classification of the tumor using improved encoder-decoder architecture in brain MRI images
    Ingle, Archana
    Sankhe, Manoj
    Roja, Mani
    Patkar, Deepak
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (08) : 643 - 651
  • [8] Brain Tumor Semantic Segmentation using Residual U-Net++ Encoder-Decoder Architecture
    Mokhtar, Mai
    Abdel-Galil, Hala
    Khoriba, Ghada
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1110 - 1117
  • [9] Efficient MRI Brain Tumor Segmentation Using Multi-resolution Encoder-Decoder Networks
    Soltaninejad, Mohammadreza
    Pridmore, Tony
    Pound, Michael
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 30 - 39
  • [10] Encoder-Decoder Network for Brain Tumor Segmentation on Multi-sequence MRI
    Iantsen, Andrei
    Jaouen, Vincent
    Visvikis, Dimitris
    Hatt, Mathieu
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 296 - 302