Unified approach for multiple sclerosis lesion segmentation on brain MRI

被引:99
|
作者
Sajja, BR
Datta, S
He, RJ
Mehta, M
Gupta, RK
Wolinsky, JS
Narayana, PA
机构
[1] Univ Texas, Sch Med, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA
[2] Sanjay Gandhi Postgrad Inst Med Sci, Dept Radiodiagnosis, Lucknow 226014, Uttar Pradesh, India
[3] Univ Texas, Sch Med, Dept Neurol, Houston, TX 77030 USA
关键词
segmentation; feature classification; multiple sclerosis; expectation maximization; hidden Markov random field; MRI;
D O I
10.1007/s10439-005-9009-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The presence of large number of false lesion classification on segmented brain MR images is a major problem in the accurate determination of lesion volumes in multiple sclerosis (MS) brains. In order to minimize the false lesion classifications, a strategy that combines parametric and nonparametric techniques is developed and implemented. This approach uses the information from the proton density (PD)- and T2-weighted and fluid attenuation inversion recovery (FLAIR) images. This strategy involves CSF and lesion classification using the Parzen window classifier. Image processing, morphological operations, and ratio maps of PD- and T2-weighted images are used for minimizing false positives. Contextual information is exploited for minimizing the false negative lesion classifications using hidden Markov random field-expectation maximization (HMRF-EM) algorithm. Lesions are delineated using fuzzy connectivity. The performance of this algorithm is quantitatively evaluated on 23 MS patients. Similarity index, percentages of over, under, and correct estimations of lesions are computed by spatially comparing the results of present procedure with expert manual segmentation. The automated processing scheme detected 80% of the manually segmented lesions in the case of low lesion load and 93% of the lesions in those cases with high lesion load.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 50 条
  • [31] New lesion segmentation for multiple sclerosis brain images with imaging and lesion-aware augmentation
    Basaran, Berke Doga
    Matthews, Paul M.
    Bai, Wenjia
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [32] SepINRIA v1.7.1: a free software for lesion segmentation and atrophy evaluation dedicated to multiple sclerosis brain MRI
    Souplet, J. C.
    Lebrun, C.
    Malandain, G.
    JOURNAL OF NEUROLOGY, 2008, 255 : 208 - 208
  • [33] MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation?
    Egger, Christine
    Opfer, Roland
    Wang, Chenyu
    Kepp, Timo
    Sormani, Maria Pia
    Spies, Lothar
    Barnett, Michael
    Schippling, Sven
    NEUROIMAGE-CLINICAL, 2017, 13 : 264 - 270
  • [34] Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches
    Llado, Xavier
    Oliver, Arnau
    Cabezas, Mariano
    Freixenet, Jordi
    Vilanova, Joan C.
    Quiles, Ana
    Valls, Laia
    Ramio-Torrenta, Lluis
    Rovira, Alex
    INFORMATION SCIENCES, 2012, 186 (01) : 164 - 185
  • [35] Prediction of Multiple Sclerosis in Brain MRI Images using Hybrid Segmentation
    Washimkar, S. P.
    Chede, S. D.
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICSPC'17), 2017, : 234 - 239
  • [36] Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling
    Valverde, Sergi
    Oliver, Arnau
    Roura, Eloy
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Sastre-Garriga, Jaume
    Montalban, Xavier
    Rovira, Alex
    Llado, Xavier
    NEUROIMAGE-CLINICAL, 2015, 9 : 640 - 647
  • [37] Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
    Richard McKinley
    Rik Wepfer
    Fabian Aschwanden
    Lorenz Grunder
    Raphaela Muri
    Christian Rummel
    Rajeev Verma
    Christian Weisstanner
    Mauricio Reyes
    Anke Salmen
    Andrew Chan
    Franca Wagner
    Roland Wiest
    Scientific Reports, 11
  • [38] A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis
    Cerri, Stefano
    Hoopes, Andrew
    Greve, Douglas N.
    Muhlau, Mark
    Van Leemput, Koen
    MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 119 - 128
  • [39] Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
    McKinley, Richard
    Wepfer, Rik
    Aschwanden, Fabian
    Grunder, Lorenz
    Muri, Raphaela
    Rummel, Christian
    Verma, Rajeev
    Weisstanner, Christian
    Reyes, Mauricio
    Salmen, Anke
    Chan, Andrew
    Wagner, Franca
    Wiest, Roland
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] Cerebral White and Grey Matter MRI Segmentation with Lesion In-Painting in Multiple Sclerosis
    Jackson, Jonathan S.
    Chard, Declan
    Dell'Oglio, Elisa
    Healy, Brian C.
    Neema, Mohit
    Bakshi, Rohit
    Miller, David H.
    Wheeler-Kingshott, Claudia C. A.
    NEUROLOGY, 2010, 74 (09) : A237 - A237