Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks

被引:9
|
作者
Munoz-Berbel, X. [2 ]
Vigues, N. [3 ]
Mas, J. [3 ]
del Valle, M. [4 ]
Munoz, F. J. [2 ]
Cortina-Puig, M. [1 ]
机构
[1] Univ Perpignan, BIOMEM Grp, F-66860 Perpignan, France
[2] CSIC, IMB, Ctr Nacl Microelect, E-08193 Barcelona, Spain
[3] Univ Autonoma Barcelona, Grp Microbiol Ambiental, E-08193 Barcelona, Spain
[4] Univ Autonoma Barcelona, Grp Sensors & Biosensors, E-08193 Barcelona, Spain
来源
BIOSENSORS & BIOELECTRONICS | 2008年 / 24卷 / 04期
关键词
Microbial binary mixtures resolution; Electrochemical impedance spectroscopy; Artificial neural networks;
D O I
10.1016/j.bios.2008.07.050
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This work describes the resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy (EIS) and artificial neural networks (ANNs) for the processing of data. Pseudomonas aeruginosa, Staphylococcus aureus and Saccharomyces cerevisiae were chosen as models for Gram-negative bacteria, Gram-positive bacteria and yeasts, respectively. In this study, best results were obtained when entering the imaginary component of the impedance at each frequency (strongly related to the capacitive elements of the electrical equivalent circuit) into backpropagation neural networks made up by two hidden layers. The optimal configuration of these layers respectively used the radbas and the logsig transfer functions with 4 or 6 neurons in the first hidden layer and 10 neurons in the second one, In all cases, good prediction ability was obtained with correlation coefficients better than 0.989 when comparing the predicted and the expected values for a set of six external test samples not used in the training process. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:958 / 962
页数:5
相关论文
共 50 条
  • [41] Laser fluorimetry of mixtures of polyatomic organic compounds using artificial neural networks
    Dolenko, SA
    Gerdova, IV
    Dolenko, TA
    Fadeev, VV
    QUANTUM ELECTRONICS, 2001, 31 (09) : 834 - 838
  • [42] Using evolutionary artificial neural networks in monitoring binary and polytomous logistic profiles
    Yeganeh, Ali
    Shadman, Alireza
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 61 : 546 - 561
  • [43] Predicting binary neutron star postmerger spectra using artificial neural networks
    Pesios, Dimitrios
    Koutalios, Ioannis
    Kugiumtzis, Dimitris
    Stergioulas, Nikolaos
    PHYSICAL REVIEW D, 2024, 110 (06)
  • [44] Battery Impedance Measurement Using Electrochemical Impedance Spectroscopy Board
    Hossain, Md. Kamal
    Islam, S. M. Rakiul
    2017 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONIC ENGINEERING (ICEEE), 2017,
  • [45] Study of electrochemical corrosion on Q235A steel under stray current excitation using combined analysis by electrochemical impedance spectroscopy and artificial neural network
    Wang, Chengtao
    Li, Wei
    Wang, Yuqiao
    Yang, Xuefeng
    Xu, Shaoyi
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 247
  • [46] THE USE OF ARTIFICIAL NEURAL NETWORKS IN PLASMA SPECTROSCOPY
    MORGAN, WL
    LARSEN, JT
    GOLDSTEIN, WH
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1994, 51 (1-2): : 247 - 253
  • [47] Near infrared spectroscopy and artificial neural networks
    Babri, M
    Rouhani, S
    Massoumi, A
    AMERICAN LABORATORY, 2000, 32 (07) : 28 - +
  • [48] Electrochemical Characterization of a PEMEC Using Impedance Spectroscopy
    Elsoe, K.
    Grahl-Madsen, L.
    Scherer, G. G.
    Hjelm, J.
    Mogensen, M. B.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (13) : F1419 - F1426
  • [49] Reagentless biosensing using electrochemical impedance spectroscopy
    Farace, G
    Lillie, G
    Hianik, T
    Payne, P
    Vadgama, P
    BIOELECTROCHEMISTRY, 2002, 55 (1-2) : 1 - 3
  • [50] Characterisation of a electrochemical hydrogen pump using electrochemical impedance spectroscopy
    M.-T. Nguyen
    S. A. Grigoriev
    A. A. Kalinnikov
    A. A. Filippov
    P. Millet
    V. N. Fateev
    Journal of Applied Electrochemistry, 2011, 41 : 1033 - 1042