Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks

被引:9
|
作者
Munoz-Berbel, X. [2 ]
Vigues, N. [3 ]
Mas, J. [3 ]
del Valle, M. [4 ]
Munoz, F. J. [2 ]
Cortina-Puig, M. [1 ]
机构
[1] Univ Perpignan, BIOMEM Grp, F-66860 Perpignan, France
[2] CSIC, IMB, Ctr Nacl Microelect, E-08193 Barcelona, Spain
[3] Univ Autonoma Barcelona, Grp Microbiol Ambiental, E-08193 Barcelona, Spain
[4] Univ Autonoma Barcelona, Grp Sensors & Biosensors, E-08193 Barcelona, Spain
来源
BIOSENSORS & BIOELECTRONICS | 2008年 / 24卷 / 04期
关键词
Microbial binary mixtures resolution; Electrochemical impedance spectroscopy; Artificial neural networks;
D O I
10.1016/j.bios.2008.07.050
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This work describes the resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy (EIS) and artificial neural networks (ANNs) for the processing of data. Pseudomonas aeruginosa, Staphylococcus aureus and Saccharomyces cerevisiae were chosen as models for Gram-negative bacteria, Gram-positive bacteria and yeasts, respectively. In this study, best results were obtained when entering the imaginary component of the impedance at each frequency (strongly related to the capacitive elements of the electrical equivalent circuit) into backpropagation neural networks made up by two hidden layers. The optimal configuration of these layers respectively used the radbas and the logsig transfer functions with 4 or 6 neurons in the first hidden layer and 10 neurons in the second one, In all cases, good prediction ability was obtained with correlation coefficients better than 0.989 when comparing the predicted and the expected values for a set of six external test samples not used in the training process. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:958 / 962
页数:5
相关论文
共 50 条
  • [21] Using Electrochemical Impedance Spectroscopy to Study the in vivo Evolution of the Electrochemical Properties of Neural Implants
    Helias, Valentin
    Zhang, Julie
    Picaud, Serge
    Degardin, Julie
    Poulichet, Patrick
    Rousseau, Lionel
    Francais, Olivier
    PROCEEDINGS OF INTERNATIONAL WORKSHOP ON IMPEDANCE SPECTROSCOPY (IWIS 2021), 2021, : 80 - 84
  • [22] Classification and quantitation of 1H NMR spectra of alditols binary mixtures using artificial neural networks
    Amendolia, SR
    Doppiu, A
    Ganadu, ML
    Lubinu, G
    ANALYTICAL CHEMISTRY, 1998, 70 (07) : 1249 - 1254
  • [23] Enhanced temporal prediction of electrochemical impedance spectroscopy using long short-term memory neural networks
    Lyu, Zewei
    Sciazko, Anna
    Shikazono, Naoki
    Han, Minfang
    ELECTROCHIMICA ACTA, 2024, 508
  • [24] State of Charge and State of Temperature Estimation Method for Secondary Batteries Using Neural Networks and Electrochemical Impedance Spectroscopy
    Takahashi K.
    Miao S.
    Katayama N.
    IEEJ Transactions on Industry Applications, 2021, 141 (12) : 1011 - 1012
  • [25] Input impedance of circular microstrip antenna using artificial neural networks
    Pattnaik, SS
    Panda, DC
    Devi, S
    IETE TECHNICAL REVIEW, 2002, 19 (03): : 125 - 127
  • [26] Improving Image Resolution of Ophthalmoscopy using Artificial Neural Networks
    Kassir, Mohssen
    Wang, Xiaolin
    Zhang, Yuhua
    Guo, Jia
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [27] Artificial Neural Networks for the Resolution of Dopamine and Serotonin Complex Mixtures Using a Graphene-Modified Carbon Electrode
    Bonet-San-Emeterio, Marta
    Gonzalez-Calabuig, Andreu
    del Valle, Manel
    ELECTROANALYSIS, 2019, 31 (02) : 390 - 397
  • [28] Application of Electrochemical Impedance Spectroscopy for prediction of Fuel Cell degradation by LSTM neural networks
    Caponetto, Riccardo
    Guarnera, Nicola
    Matera, Fabio
    Privitera, Emanuela
    Xibilia, Maria Grazia
    2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, : 1064 - 1069
  • [29] Predicting the toxicity of complex mixtures using artificial neural networks.
    Gagne, F
    Blaise, C
    CHEMOSPHERE, 1997, 35 (06) : 1343 - 1363
  • [30] ARTIFICIAL NEURAL NETWORKS IN IDENTIFICATION AND SYSTEMATICS OF EUKARYOTIC MICROORGANISMS
    MORRIS, CW
    BODDY, L
    BINARY-COMPUTING IN MICROBIOLOGY, 1995, 7 (02): : 70 - 76