Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks

被引:9
|
作者
Munoz-Berbel, X. [2 ]
Vigues, N. [3 ]
Mas, J. [3 ]
del Valle, M. [4 ]
Munoz, F. J. [2 ]
Cortina-Puig, M. [1 ]
机构
[1] Univ Perpignan, BIOMEM Grp, F-66860 Perpignan, France
[2] CSIC, IMB, Ctr Nacl Microelect, E-08193 Barcelona, Spain
[3] Univ Autonoma Barcelona, Grp Microbiol Ambiental, E-08193 Barcelona, Spain
[4] Univ Autonoma Barcelona, Grp Sensors & Biosensors, E-08193 Barcelona, Spain
来源
BIOSENSORS & BIOELECTRONICS | 2008年 / 24卷 / 04期
关键词
Microbial binary mixtures resolution; Electrochemical impedance spectroscopy; Artificial neural networks;
D O I
10.1016/j.bios.2008.07.050
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This work describes the resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy (EIS) and artificial neural networks (ANNs) for the processing of data. Pseudomonas aeruginosa, Staphylococcus aureus and Saccharomyces cerevisiae were chosen as models for Gram-negative bacteria, Gram-positive bacteria and yeasts, respectively. In this study, best results were obtained when entering the imaginary component of the impedance at each frequency (strongly related to the capacitive elements of the electrical equivalent circuit) into backpropagation neural networks made up by two hidden layers. The optimal configuration of these layers respectively used the radbas and the logsig transfer functions with 4 or 6 neurons in the first hidden layer and 10 neurons in the second one, In all cases, good prediction ability was obtained with correlation coefficients better than 0.989 when comparing the predicted and the expected values for a set of six external test samples not used in the training process. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:958 / 962
页数:5
相关论文
共 50 条
  • [31] A Sensitive Electrochemical Impedance Spectroscopy Method for Detection of Polyimide Degradation by Microorganisms
    Ji-Guang Gu
    Shu-Pei Cheng
    Jianhua Liu
    Ji-Dong Gu
    Journal of Polymers and the Environment, 2000, 8 : 167 - 174
  • [32] A sensitive electrochemical impedance spectroscopy method for detection of polyimide degradation by microorganisms
    Gu, JG
    Cheng, SP
    Liu, JH
    Gu, JD
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2000, 8 (04) : 167 - 174
  • [33] Artificial neural networks to correlate in-tube turbulent forced convection of binary gas mixtures
    Diaz, Gerardo
    Campo, Antonio
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2009, 48 (07) : 1392 - 1397
  • [34] Binary Sequences for Online Electrochemical Impedance Spectroscopy of Battery Cells
    Ramilli, Roberta
    Santoni, Francesco
    De Angelis, Alessio
    Crescentini, Marco
    Carbone, Paolo
    Traverso, Pier Andrea
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [35] Input impedance of rectangular microstrip patch antenna using artificial neural networks
    Pattnaik, SS
    Panda, DC
    Devi, S
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2002, 32 (05) : 381 - 383
  • [36] Fast Video Super-resolution using Artificial Neural Networks
    Cheng, Ming-Hui
    Lin, Nai-Wei
    Hwang, Kao-Shing
    Jeng, Jyh-Horng
    PROCEEDINGS OF THE 2012 8TH INTERNATIONAL SYMPOSIUM ON COMMUNICATION SYSTEMS, NETWORKS & DIGITAL SIGNAL PROCESSING (CSNDSP), 2012,
  • [37] On the estimation of sugars concentrations using Raman spectroscopy and artificial neural networks
    Gonzalez-Viveros, N.
    Gomez-Gil, P.
    Castro-Ramos, J.
    Cerecedo-Nunez, H. H.
    FOOD CHEMISTRY, 2021, 352
  • [38] Identifying thermal phase transitions of lignin-solvent mixtures using electrochemical impedance spectroscopy
    Klett, Adam S.
    Gamble, Jordan A.
    Thies, Mark C.
    Roberts, Mark E.
    GREEN CHEMISTRY, 2016, 18 (07) : 1892 - 1897
  • [39] Neural networks approach for simulation of electrochemical impedance diagrams
    Cristea, M
    Varvara, S
    Muresan, L
    Popescu, IC
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2003, 42 (04): : 764 - 768