Nonsmooth Lagrangian mechanics and variational collision integrators

被引:88
|
作者
Fetecau, RC [1 ]
Marsden, JE
Ortiz, M
West, M
机构
[1] CALTECH, Grad Aeronaut Labs 105 50, Pasadena, CA 91125 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
来源
关键词
discrete mechanics; variational integrators; collisions;
D O I
10.1137/S1111111102406038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for collisions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum conservation theorem. Discretizations of this nonsmooth mechanics are developed by using the methodology of variational discrete mechanics. This leads to variational integrators which are symplectic-momentum preserving and are consistent with the jump conditions given in the continuous theory. Specific examples of these methods are tested numerically, and the long-time stable energy behavior typical of variational methods is demonstrated.
引用
收藏
页码:381 / 416
页数:36
相关论文
共 50 条
  • [1] MULTISYMPLECTIC VARIATIONAL INTEGRATORS FOR NONSMOOTH LAGRANGIAN CONTINUUM MECHANICS
    Demoures, Francois
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    [J]. FORUM OF MATHEMATICS SIGMA, 2016, 4 : 1 - 54
  • [2] Lagrangian mechanics and variational integrators on two-spheres
    Lee, Taeyoung
    Leok, Melvin
    McClamroch, N. Harris
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (09) : 1147 - 1174
  • [3] Lagrangian Mechanics and Lie Group Variational Integrators for Spacecraft with Imbalanced Reaction Wheels
    Lee, Taeyoung
    Leve, Frederick
    [J]. 2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 3122 - 3127
  • [4] Lagrangian and Hamiltonian Taylor variational integrators
    Jeremy Schmitt
    Tatiana Shingel
    Melvin Leok
    [J]. BIT Numerical Mathematics, 2018, 58 : 457 - 488
  • [5] Lagrangian and Hamiltonian Taylor variational integrators
    Schmitt, Jeremy
    Shingel, Tatiana
    Leok, Melvin
    [J]. BIT NUMERICAL MATHEMATICS, 2018, 58 (02) : 457 - 488
  • [6] Variational Integrators in Holonomic Mechanics
    Man, Shumin
    Gao, Qiang
    Zhong, Wanxie
    [J]. MATHEMATICS, 2020, 8 (08)
  • [7] Variational integrators in nonholonomic and vakonomic mechanics
    Manuel de León
    Pedro L. García
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 47 - 48
  • [8] Variational integrators in discrete vakonomic mechanics
    Pedro L. García
    Antonio Fernández
    César Rodrigo
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 137 - 159
  • [9] Variational integrators in discrete vakonomic mechanics
    Garcia, Pedro L.
    Fernandez, Antonio
    Rodrigo, Cesar
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 137 - 159
  • [10] Variational integrators in nonholonomic and vakonomic mechanics
    de Leon, Manuel
    Garcia, Pedro L.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 47 - 48