Lagrangian and Hamiltonian Taylor variational integrators

被引:6
|
作者
Schmitt, Jeremy [1 ]
Shingel, Tatiana [1 ]
Leok, Melvin [1 ]
机构
[1] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
基金
美国国家科学基金会;
关键词
Geometric numerical integration; Variational integrators; Symplectic integrators; Hamiltonian mechanics; MECHANICS;
D O I
10.1007/s10543-017-0690-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present a variational integrator that is based on an approximation of the Euler-Lagrange boundary-value problem via Taylor's method. This can be viewed as a special case of the shooting-based variational integrator. The Taylor variational integrator exploits the structure of the Taylor method, which results in a shooting method that is one order higher compared to other shooting methods based on a one-step method of the same order. In addition, this method can generate quadrature nodal evaluations at the cost of a polynomial evaluation, which may increase its efficiency relative to other shooting-based variational integrators. A symmetric version of the method is proposed, and numerical experiments are conducted to exhibit the efficacy and efficiency of the method.
引用
收藏
页码:457 / 488
页数:32
相关论文
共 50 条
  • [1] Lagrangian and Hamiltonian Taylor variational integrators
    Jeremy Schmitt
    Tatiana Shingel
    Melvin Leok
    [J]. BIT Numerical Mathematics, 2018, 58 : 457 - 488
  • [2] Properties of Hamiltonian variational integrators
    Schmitt, Jeremy M.
    Leok, Melvin
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 377 - 398
  • [3] Discrete Hamiltonian variational integrators
    Leok, Melvin
    Zhang, Jingjing
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1497 - 1532
  • [4] Multisymplectic Hamiltonian variational integrators
    Tran, Brian
    Leok, Melvin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (01) : 113 - 157
  • [5] Stochastic discrete Hamiltonian variational integrators
    Darryl D. Holm
    Tomasz M. Tyranowski
    [J]. BIT Numerical Mathematics, 2018, 58 : 1009 - 1048
  • [6] Stochastic discrete Hamiltonian variational integrators
    Holm, Darryl D.
    Tyranowski, Tomasz M.
    [J]. BIT NUMERICAL MATHEMATICS, 2018, 58 (04) : 1009 - 1048
  • [7] Nonsmooth Lagrangian mechanics and variational collision integrators
    Fetecau, RC
    Marsden, JE
    Ortiz, M
    West, M
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2003, 2 (03): : 381 - 416
  • [8] DYNAMICS AND VARIATIONAL INTEGRATORS OF STOCHASTIC HAMILTONIAN SYSTEMS
    Wang, Lijin
    Hong, Jialin
    Scherer, Rudolf
    Bai, Fengshan
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2009, 6 (04) : 586 - 602
  • [9] On variational and symplectic time integrators for Hamiltonian systems
    Gagarina, E.
    Ambati, V. R.
    Nurijanyan, S.
    van der Vegt, J. J. W.
    Bokhove, O.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 306 : 370 - 389
  • [10] Variational integrators for stochastic dissipative Hamiltonian systems
    Kraus, Michael
    Tyranowski, Tomasz M.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) : 1318 - 1367