Stochastic discrete Hamiltonian variational integrators

被引:26
|
作者
Holm, Darryl D. [1 ]
Tyranowski, Tomasz M. [1 ,2 ]
机构
[1] Imperial Coll London, Math Dept, London SW7 2AZ, England
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
基金
欧洲研究理事会;
关键词
Stochastic Hamiltonian systems; Variational integrators; Geometric numerical integration methods; Geometric mechanics; Stochastic differential equations; 65C30; RUNGE-KUTTA METHODS; DIFFERENTIAL-EQUATIONS; ORDER CONDITIONS; QUADRATIC-INVARIANTS; SYMPLECTIC SCHEMES; SYSTEMS;
D O I
10.1007/s10543-018-0720-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Variational integrators are derived for structure-preserving simulation of stochastic Hamiltonian systems with a certain type of multiplicative noise arising in geometric mechanics. The derivation is based on a stochastic discrete Hamiltonian which approximates a type-II stochastic generating function for the stochastic flow of the Hamiltonian system. The generating function is obtained by introducing an appropriate stochastic action functional and its corresponding variational principle. Our approach permits to recast in a unified framework a number of integrators previously studied in the literature, and presents a general methodology to derive new structure-preserving numerical schemes. The resulting integrators are symplectic; they preserve integrals of motion related to Lie group symmetries; and they include stochastic symplectic Runge-Kutta methods as a special case. Several new low-stage stochastic symplectic methods of mean-square order 1.0 derived using this approach are presented and tested numerically to demonstrate their superior long-time numerical stability and energy behavior compared to nonsymplectic methods.
引用
收藏
页码:1009 / 1048
页数:40
相关论文
共 50 条
  • [1] Stochastic discrete Hamiltonian variational integrators
    Darryl D. Holm
    Tomasz M. Tyranowski
    [J]. BIT Numerical Mathematics, 2018, 58 : 1009 - 1048
  • [2] Discrete Hamiltonian variational integrators
    Leok, Melvin
    Zhang, Jingjing
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1497 - 1532
  • [3] DYNAMICS AND VARIATIONAL INTEGRATORS OF STOCHASTIC HAMILTONIAN SYSTEMS
    Wang, Lijin
    Hong, Jialin
    Scherer, Rudolf
    Bai, Fengshan
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2009, 6 (04) : 586 - 602
  • [4] Variational integrators for stochastic dissipative Hamiltonian systems
    Kraus, Michael
    Tyranowski, Tomasz M.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) : 1318 - 1367
  • [5] Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators
    Shan Gao
    Donghua Shi
    Dmitry V. Zenkov
    [J]. Journal of Nonlinear Science, 2023, 33
  • [6] Spectral variational integrators for semi-discrete Hamiltonian wave equations
    Li, Yiqun
    Wu, Boying
    Leok, Melvin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 325 : 56 - 73
  • [7] Properties of Hamiltonian variational integrators
    Schmitt, Jeremy M.
    Leok, Melvin
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 377 - 398
  • [8] Multisymplectic Hamiltonian variational integrators
    Tran, Brian
    Leok, Melvin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (01) : 113 - 157
  • [9] Stochastic variational integrators
    Bou-Rabee, Nawaf
    Owhadi, Houman
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) : 421 - 443
  • [10] Lagrangian and Hamiltonian Taylor variational integrators
    Schmitt, Jeremy
    Shingel, Tatiana
    Leok, Melvin
    [J]. BIT NUMERICAL MATHEMATICS, 2018, 58 (02) : 457 - 488