Variational integrators in discrete vakonomic mechanics

被引:3
|
作者
Garcia, Pedro L. [1 ]
Fernandez, Antonio [2 ]
Rodrigo, Cesar [3 ]
机构
[1] Univ Salamanca, Dept Math, E-37008 Salamanca, Spain
[2] Univ Salamanca, Dept Appl Math, E-37008 Salamanca, Spain
[3] Acad Militar, CINAMIL, P-2720113 Amadora, Portugal
关键词
Variational integrators; Vakonomic mechanics; Discrete Cartan forms; Generating functions; GEOMETRIC ASPECTS; CALCULUS; DYNAMICS;
D O I
10.1007/s13398-011-0030-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the discrete counterpart of the vakonomic method in Lagrangian mechanics with non-holonomic constraints. After defining the concepts of "admissible section" and "admissible infinitesimal variation" of a discrete vakonomic system, we aim to determinate those admissible sections that are critical for the Lagrangian of the system with respect to admissible infinitesimal variations. For sections that satisfy a certain regularity condition, we prove that critical sections are extremals of a variational problem without constraints canonically associated to the initial system (Lagrange multiplier rule). We introduce a notion of "constrained variational integrator", which is characterized by a Cartan equation that ensures its simplecticity. Moreover, under certain regularity conditions we prove that these integrators can be locally constructed from a generating function of the second kind in the sense of symplectic geometry. Finally, the theory is illustrated with two elementary examples: an isoperimetric problem and an optimal control problem.
引用
收藏
页码:137 / 159
页数:23
相关论文
共 50 条
  • [1] Variational integrators in discrete vakonomic mechanics
    Pedro L. García
    Antonio Fernández
    César Rodrigo
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 137 - 159
  • [2] Variational integrators in nonholonomic and vakonomic mechanics
    de Leon, Manuel
    Garcia, Pedro L.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 47 - 48
  • [3] Variational integrators in nonholonomic and vakonomic mechanics
    Manuel de León
    Pedro L. García
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 47 - 48
  • [4] Discrete vakonomic mechanics
    Benito, R
    de Diego, DM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [5] Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators
    Shan Gao
    Donghua Shi
    Dmitry V. Zenkov
    [J]. Journal of Nonlinear Science, 2023, 33
  • [6] Continuous and discrete approaches to vakonomic mechanics
    Fernando Jiménez
    David Martín de Diego
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 75 - 87
  • [7] Continuous and discrete approaches to vakonomic mechanics
    Jimenez, Fernando
    de Diego, David Martin
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 75 - 87
  • [8] Variational Integrators in Holonomic Mechanics
    Man, Shumin
    Gao, Qiang
    Zhong, Wanxie
    [J]. MATHEMATICS, 2020, 8 (08)
  • [9] Discrete Hamiltonian variational integrators
    Leok, Melvin
    Zhang, Jingjing
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1497 - 1532
  • [10] Discrete Hamiltonian Variational Mechanics and Hamel's Integrators (vol 33, 26, 2023)
    Gao, Shan
    Shi, Donghua
    Zenkov, Dmitry V.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (02)