Continuous and discrete approaches to vakonomic mechanics

被引:0
|
作者
Fernando Jiménez
David Martín de Diego
机构
[1] Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UC3M),
关键词
Vakonomic mechanics; Geometric integration; Hamiltonian formalism; SubRiemannian geometry; 37J60; 37M15; 70F25; 70G45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we summarize the main features of vakonomic mechanics (or constrained variational calculus), both from continuous and discrete points of views. In the continuous case, we focus ourselves on Lagrangian systems defined by the following data: a Riemannian metric (kinetic term) and constraints linear on the velocities. We show that, for such kind of systems, it is possible to find an explicit Hamiltonian description. For the numerical setting, we describe two methods to design geometric integrators, first, applying discrete variational calculus to a discretization of the continuous vakonomic problem or, second, applying standard symplectic integration to the Hamiltonian description of the initial vakonomic system. We show that, in a particular case, both constructions match exactly.
引用
收藏
页码:75 / 87
页数:12
相关论文
共 50 条
  • [1] Continuous and discrete approaches to vakonomic mechanics
    Jimenez, Fernando
    de Diego, David Martin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 75 - 87
  • [2] Discrete vakonomic mechanics
    Benito, R
    de Diego, DM
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [3] Variational integrators in discrete vakonomic mechanics
    Garcia, Pedro L.
    Fernandez, Antonio
    Rodrigo, Cesar
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 137 - 159
  • [4] Variational integrators in discrete vakonomic mechanics
    Pedro L. García
    Antonio Fernández
    César Rodrigo
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 137 - 159
  • [5] Vakonomic mechanics on Lie affgebroids
    Marrero, J. C.
    de Diego, D. Martin
    Sosa, D.
    GEOMETRY AND PHYSICS XVI INTERNATIONAL FALL WORKSHOP, 2008, 1023 : 187 - +
  • [6] Dirac structures in vakonomic mechanics
    Jimenez, Fernando
    Yoshimura, Hiroaki
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 94 : 158 - 178
  • [7] A new approach to the vakonomic mechanics
    Jaume Llibre
    Rafael Ramírez
    Natalia Sadovskaia
    Nonlinear Dynamics, 2014, 78 : 2219 - 2247
  • [8] Variational integrators in nonholonomic and vakonomic mechanics
    de Leon, Manuel
    Garcia, Pedro L.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 47 - 48
  • [9] Complete inequivalence of nonholonomic and vakonomic mechanics
    Lemos, Nivaldo A.
    ACTA MECHANICA, 2022, 233 (01) : 47 - 56
  • [10] An Inverse Problem on Vakonomic Mechanics
    Oliva W.M.
    Terra G.
    SeMA Journal, 2010, 51 (1): : 141 - 148