Nonsmooth Lagrangian mechanics and variational collision integrators

被引:88
|
作者
Fetecau, RC [1 ]
Marsden, JE
Ortiz, M
West, M
机构
[1] CALTECH, Grad Aeronaut Labs 105 50, Pasadena, CA 91125 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
来源
关键词
discrete mechanics; variational integrators; collisions;
D O I
10.1137/S1111111102406038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for collisions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum conservation theorem. Discretizations of this nonsmooth mechanics are developed by using the methodology of variational discrete mechanics. This leads to variational integrators which are symplectic-momentum preserving and are consistent with the jump conditions given in the continuous theory. Specific examples of these methods are tested numerically, and the long-time stable energy behavior typical of variational methods is demonstrated.
引用
收藏
页码:381 / 416
页数:36
相关论文
共 50 条
  • [41] Stochastic variational integrators
    Bou-Rabee, Nawaf
    Owhadi, Houman
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) : 421 - 443
  • [42] Asynchronous Variational Integrators
    A. Lew
    J. E. Marsden
    M. Ortiz
    M. West
    [J]. Archive for Rational Mechanics and Analysis, 2003, 167 : 85 - 146
  • [43] Contact variational integrators
    Vermeeren, Mats
    Bravetti, Alessandro
    Seri, Marcello
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (44)
  • [44] General analytic solutions and complementary variational principles for large deformation nonsmooth mechanics
    Gao, DY
    [J]. MECCANICA, 1999, 34 (03) : 169 - 198
  • [45] Asynchronous variational integrators
    Lew, A
    Ortiz, M
    [J]. GEOMETRY, MECHANICS AND DYNAMICS: VOLUME IN HONOR OF THE 60TH BIRTHDAY OF J. E. MARSDEN, 2002, : 91 - 110
  • [46] General Analytic Solutions and Complementary Variational Principles for Large Deformation Nonsmooth Mechanics
    David Yang Gao
    [J]. Meccanica, 1999, 34 : 399 - 399
  • [47] Spectral variational integrators
    James Hall
    Melvin Leok
    [J]. Numerische Mathematik, 2015, 130 : 681 - 740
  • [48] Numerical integrators for Lagrangian oceanography
    Nordam, Tor
    Duran, Rodrigo
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (12) : 5935 - 5957
  • [49] On the convergence of the Uzawa method with a modified Lagrangian functional for variational inequalities in mechanics
    E. M. Vikhtenko
    G. Woo
    R. V. Namm
    [J]. Computational Mathematics and Mathematical Physics, 2010, 50 : 1289 - 1298
  • [50] On the convergence of the Uzawa method with a modified Lagrangian functional for variational inequalities in mechanics
    Vikhtenko, E. M.
    Woo, G.
    Namm, R. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (08) : 1289 - 1298