Random coefficients integer-valued threshold autoregressive processes driven by logistic regression

被引:21
|
作者
Yang, Kai [1 ]
Li, Han [2 ]
Wang, Dehui [3 ]
Zhang, Chenhui [3 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Jilin, Peoples R China
[2] Changchun Univ, Sch Sci, Changchun 130012, Jilin, Peoples R China
[3] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Threshold integer-valued autoregressive models; Random coefficients models; Logistic regression; Explanatory variables; TIME-SERIES; LIKELIHOOD-ESTIMATION; MODEL; INFERENCE; CLIMATE; COUNTS;
D O I
10.1007/s10182-020-00379-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we introduce a new random coefficients self-exciting threshold integer-valued autoregressive process. The autoregressive coefficients are driven by a logistic regression structure, so that the explanatory variables can be included. Basic probabilistic and statistical properties of this model are discussed. Conditional least squares and conditional maximum likelihood estimators, as well as the asymptotic properties of the estimators, are discussed. The nonlinearity test of the model and existence test of explanatory variables are also addressed. As an illustration, we evaluate our estimates through a simulation study. Finally, we apply our method to the data sets of sexual offences in Ballina, New South Wales (NSW), Australia, with two covariates of temperature and drug offences. The result reveals that the proposed model fits the data sets well.
引用
收藏
页码:533 / 557
页数:25
相关论文
共 50 条
  • [21] Conditional L-1 estimation for random coefficient integer-valued autoregressive processes
    Chen, Xi
    Wang, Lihong
    STATISTICS & RISK MODELING, 2013, 30 (03) : 221 - 235
  • [22] The Empirical Likelihood for First-Order Random Coefficient Integer-Valued Autoregressive Processes
    Zhang, Haixiang
    Wang, Dehui
    Zhu, Fukang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (03) : 492 - 509
  • [23] Statistical inference for first-order random coefficient integer-valued autoregressive processes
    Zhiwen Zhao
    Yadi Hu
    Journal of Inequalities and Applications, 2015
  • [24] A Time-Varying Mixture Integer-Valued Threshold Autoregressive Process Driven by Explanatory Variables
    Sheng, Danshu
    Wang, Dehui
    Zhang, Jie
    Wang, Xinyang
    Zhai, Yiran
    ENTROPY, 2024, 26 (02)
  • [25] Random rounded integer-valued autoregressive conditional heteroskedastic process
    Liu, Tianqing
    Yuan, Xiaohui
    STATISTICAL PAPERS, 2013, 54 (03) : 645 - 683
  • [26] Random rounded integer-valued autoregressive conditional heteroskedastic process
    Tianqing Liu
    Xiaohui Yuan
    Statistical Papers, 2013, 54 : 645 - 683
  • [27] The Circumstance-Driven Bivariate Integer-Valued Autoregressive Model
    Wang, Huiqiao
    Weiss, Christian H.
    ENTROPY, 2024, 26 (02)
  • [28] Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes
    Li, Han
    Yang, Kai
    Wang, Dehui
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1597 - 1620
  • [29] Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes
    Han Li
    Kai Yang
    Dehui Wang
    Computational Statistics, 2017, 32 : 1597 - 1620
  • [30] A Goodness-of-Fit Test for Integer-Valued Autoregressive Processes
    Schweer, Sebastian
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (01) : 77 - 98