Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes

被引:0
|
作者
Han Li
Kai Yang
Dehui Wang
机构
[1] Jilin University,School of Mathematics
来源
Computational Statistics | 2017年 / 32卷
关键词
SETINAR process; Integer-valued threshold models; Confidence region;
D O I
暂无
中图分类号
学科分类号
摘要
This article redefines the self-exciting threshold integer-valued autoregressive (SETINAR(2,1)) processes under a weaker condition that the second moment is finite, and studies the quasi-likelihood inference for the new model. The ergodicity of the new processes is discussed. Quasi-likelihood estimators for the model parameters and the asymptotic properties are obtained. Confidence regions of the parameters based on the quasi-likelihood method are given. A simulation study is conducted for the evaluation of the proposed approach and an application to a real data example is provided.
引用
收藏
页码:1597 / 1620
页数:23
相关论文
共 50 条
  • [1] Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes
    Li, Han
    Yang, Kai
    Wang, Dehui
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1597 - 1620
  • [2] Integer-Valued Self-Exciting Threshold Autoregressive Processes
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (15) : 2717 - 2737
  • [3] Statistical Inference for Periodic Self-Exciting Threshold Integer-Valued Autoregressive Processes
    Liu, Congmin
    Cheng, Jianhua
    Wang, Dehui
    ENTROPY, 2021, 23 (06)
  • [4] On Bivariate Self-Exciting Hysteretic Integer-Valued Autoregressive Processes
    Yang, Kai
    Chen, Xiaoman
    Li, Han
    Xia, Chao
    Wang, Xinyang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [5] On MCMC sampling in random coefficients self-exciting integer-valued threshold autoregressive processes
    Yang, Kai
    Li, Ang
    Yu, Xinyang
    Dong, Xiaogang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (01) : 164 - 182
  • [6] Conditional minimum density power divergence estimator for self-exciting integer-valued threshold autoregressive models
    Sun, Mingyu
    Yang, Kai
    Li, Ang
    TEST, 2025, 34 (01) : 198 - 234
  • [7] On MCMC sampling in self-exciting integer-valued threshold time series models
    Yang, Kai
    Yu, Xinyang
    Zhang, Qingqing
    Dong, Xiaogang
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 169
  • [8] Negative Binomial Quasi-Likelihood Inference for General Integer-Valued Time Series Models
    Aknouche, Abdelhakim
    Bendjeddou, Sara
    Touche, Nassim
    JOURNAL OF TIME SERIES ANALYSIS, 2018, 39 (02) : 192 - 211
  • [9] Self-exciting threshold binomial autoregressive processes
    Tobias A. Möller
    Maria Eduarda Silva
    Christian H. Weiß
    Manuel G. Scotto
    Isabel Pereira
    AStA Advances in Statistical Analysis, 2016, 100 : 369 - 400
  • [10] Self-exciting threshold binomial autoregressive processes
    Moeller, Tobias A.
    Silva, Maria Eduarda
    Weiss, Christian H.
    Scotto, Manuel G.
    Pereira, Isabel
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2016, 100 (04) : 369 - 400