Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes

被引:0
|
作者
Han Li
Kai Yang
Dehui Wang
机构
[1] Jilin University,School of Mathematics
来源
Computational Statistics | 2017年 / 32卷
关键词
SETINAR process; Integer-valued threshold models; Confidence region;
D O I
暂无
中图分类号
学科分类号
摘要
This article redefines the self-exciting threshold integer-valued autoregressive (SETINAR(2,1)) processes under a weaker condition that the second moment is finite, and studies the quasi-likelihood inference for the new model. The ergodicity of the new processes is discussed. Quasi-likelihood estimators for the model parameters and the asymptotic properties are obtained. Confidence regions of the parameters based on the quasi-likelihood method are given. A simulation study is conducted for the evaluation of the proposed approach and an application to a real data example is provided.
引用
收藏
页码:1597 / 1620
页数:23
相关论文
共 50 条
  • [31] Statistical inference for first-order random coefficient integer-valued autoregressive processes
    Zhiwen Zhao
    Yadi Hu
    Journal of Inequalities and Applications, 2015
  • [32] Limit theorems for bifurcating integer-valued autoregressive processes
    Bercu B.
    Blandin V.
    Statistical Inference for Stochastic Processes, 2015, 18 (1) : 33 - 67
  • [33] Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach
    Xinyang Wang
    Dehui Wang
    Kai Yang
    Metrika, 2021, 84 : 713 - 750
  • [34] Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach
    Wang, Xinyang
    Wang, Dehui
    Yang, Kai
    METRIKA, 2021, 84 (05) : 713 - 750
  • [35] Two-Threshold-Variable Integer-Valued Autoregressive Model
    Zhang, Jiayue
    Zhu, Fukang
    Chen, Huaping
    MATHEMATICS, 2023, 11 (16)
  • [36] Threshold integer-valued autoregressive model with serially dependent innovation
    Kang, Yao
    Sheng, Danshu
    Yue, Jinmei
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (17) : 3826 - 3863
  • [37] Empirical likelihood for special self-exciting threshold autoregressive models with heavy-tailed errors
    Li, Jinyu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (16) : 5814 - 5835
  • [38] Estimation of parameters in the self-exciting threshold autoregressive processes for nonlinear time series of counts
    Yang, Kai
    Li, Han
    Wang, Dehui
    APPLIED MATHEMATICAL MODELLING, 2018, 57 : 226 - 247
  • [39] Multivariate Self-Exciting Threshold Autoregressive Modeling by Genetic Algorithms
    Baragona, Roberto
    Cucina, Domenico
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2013, 233 (01): : 4 - 22
  • [40] Adaptive parameter estimation in self-exciting threshold autoregressive models
    Institute of Medical Statistics, Computer Sciences and Documentation, Friedrich Schiller University Jena, Jahnstraße 1, 07743 Jena, Germany
    不详
    Communications in Statistics Part B: Simulation and Computation, 27 (04): : 921 - 936