Self-exciting threshold binomial autoregressive processes

被引:0
|
作者
Tobias A. Möller
Maria Eduarda Silva
Christian H. Weiß
Manuel G. Scotto
Isabel Pereira
机构
[1] Helmut Schmidt University,Department of Mathematics and Statistics
[2] University of Porto,Center for Research and Development in Mathematics and Applications (CIDMA), Faculty of Economics
[3] IST University of Lisbon,CEMAT and Department of Mathematics
[4] University of Aveiro,Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics
来源
关键词
Thinning operation; Threshold models; Binomial models; Count processes;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new class of integer-valued self-exciting threshold models, which is based on the binomial autoregressive model of order one as introduced by McKenzie (Water Resour Bull 21:645–650, 1985. doi:10.1111/j.1752-1688.1985.tb05379.x). Basic probabilistic and statistical properties of this class of models are discussed. Moreover, parameter estimation and forecasting are addressed. Finally, the performance of these models is illustrated through a simulation study and an empirical application to a set of measle cases in Germany.
引用
收藏
页码:369 / 400
页数:31
相关论文
共 50 条
  • [1] Self-exciting threshold binomial autoregressive processes
    Moeller, Tobias A.
    Silva, Maria Eduarda
    Weiss, Christian H.
    Scotto, Manuel G.
    Pereira, Isabel
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2016, 100 (04) : 369 - 400
  • [2] Self-exciting hysteretic binomial autoregressive processes
    Yang, Kai
    Zhao, Xiuyue
    Dong, Xiaogang
    Weiss, Christian H.
    [J]. STATISTICAL PAPERS, 2024, 65 (03) : 1197 - 1231
  • [3] Integer-Valued Self-Exciting Threshold Autoregressive Processes
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (15) : 2717 - 2737
  • [4] Option valuation by a self-exciting threshold binomial model
    Yuen, Fei Lung
    Siu, Tak Kuen
    Yang, Hailiang
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (1-2) : 28 - 37
  • [5] Recursive fitting of self-exciting threshold autoregressive models
    Arnold, M
    Gunther, R
    Witte, H
    [J]. SIGNAL ANALYSIS & PREDICTION I, 1997, : 79 - 82
  • [7] Statistical Inference for Periodic Self-Exciting Threshold Integer-Valued Autoregressive Processes
    Liu, Congmin
    Cheng, Jianhua
    Wang, Dehui
    [J]. ENTROPY, 2021, 23 (06)
  • [8] Estimation of parameters in the self-exciting threshold autoregressive processes for nonlinear time series of counts
    Yang, Kai
    Li, Han
    Wang, Dehui
    [J]. APPLIED MATHEMATICAL MODELLING, 2018, 57 : 226 - 247
  • [9] Multivariate Self-Exciting Threshold Autoregressive Modeling by Genetic Algorithms
    Baragona, Roberto
    Cucina, Domenico
    [J]. JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2013, 233 (01): : 4 - 22
  • [10] Adaptive parameter estimation in self-exciting threshold autoregressive models
    Institute of Medical Statistics, Computer Sciences and Documentation, Friedrich Schiller University Jena, Jahnstraße 1, 07743 Jena, Germany
    不详
    [J]. Communications in Statistics Part B: Simulation and Computation, 27 (04): : 921 - 936