A Time-Varying Mixture Integer-Valued Threshold Autoregressive Process Driven by Explanatory Variables

被引:0
|
作者
Sheng, Danshu [1 ]
Wang, Dehui [1 ]
Zhang, Jie [2 ]
Wang, Xinyang [1 ]
Zhai, Yiran [3 ]
机构
[1] Liaoning Univ, Sch Math & Stat, Shenyang 110031, Peoples R China
[2] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Peoples R China
[3] State Grid Jilin Elect Power Co Ltd, Informat & Telecommun Co, Changchun 132400, Peoples R China
基金
中国国家自然科学基金;
关键词
threshold integer-valued autoregressive models; mixture thinning operator; parameter estimation; Wald test; explanatory variables; SERIES; COUNTS; MODELS;
D O I
10.3390/e26020140
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a time-varying first-order mixture integer-valued threshold autoregressive process driven by explanatory variables is introduced. The basic probabilistic and statistical properties of this model are studied in depth. We proceed to derive estimators using the conditional least squares (CLS) and conditional maximum likelihood (CML) methods, while also establishing the asymptotic properties of the CLS estimator. Furthermore, we employed the CLS and CML score functions to infer the threshold parameter. Additionally, three test statistics to detect the existence of the piecewise structure and explanatory variables were utilized. To support our findings, we conducted simulation studies and applied our model to two applications concerning the daily stock trading volumes of VOW.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] A new minification integer-valued autoregressive process driven by explanatory variables
    Qian, Lianyong
    Zhu, Fukang
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2022, 64 (04) : 478 - 494
  • [2] Multivariate threshold integer-valued autoregressive processes with explanatory variables
    Yang, Kai
    Xu, Nuo
    Li, Han
    Zhao, Yiwei
    Dong, Xiaogang
    APPLIED MATHEMATICAL MODELLING, 2023, 124 : 142 - 166
  • [3] A new integer-valued threshold autoregressive process based on modified negative binomial operator driven by explanatory variables
    Yixuan Fan
    Jianhua Cheng
    Dehui Wang
    Statistical Papers, 2024, 65 (9) : 5873 - 5901
  • [4] An integer-valued autoregressive process for seasonality
    Buteikis, Andrius
    Leipus, Remigijus
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (03) : 391 - 411
  • [5] On the Rounded Integer-Valued Autoregressive Process
    Kachour, Maher
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (02) : 355 - 376
  • [6] An integer-valued threshold autoregressive process based on negative binomial thinning
    Yang, Kai
    Wang, Dehui
    Jia, Boting
    Li, Han
    STATISTICAL PAPERS, 2018, 59 (03) : 1131 - 1160
  • [7] An integer-valued threshold autoregressive process based on negative binomial thinning
    Kai Yang
    Dehui Wang
    Boting Jia
    Han Li
    Statistical Papers, 2018, 59 : 1131 - 1160
  • [8] A zero-inflated Poisson integer-valued autoregressive model with time-varying coefficients covariates
    Mao, Zhibin
    Yang, Baoying
    Han, Ke
    Pan, Yuchen
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024,
  • [9] Random coefficients integer-valued threshold autoregressive processes driven by logistic regression
    Yang, Kai
    Li, Han
    Wang, Dehui
    Zhang, Chenhui
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2021, 105 (04) : 533 - 557
  • [10] Random coefficients integer-valued threshold autoregressive processes driven by logistic regression
    Kai Yang
    Han Li
    Dehui Wang
    Chenhui Zhang
    AStA Advances in Statistical Analysis, 2021, 105 : 533 - 557