Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations

被引:19
|
作者
Shi, Wenjie [1 ]
Zhang, Chengjian [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
Generalized polynomial chaos; Uncertainty quantification; Nonlinear random ordinary differential equations; Error analysis; MODELING UNCERTAINTY; NUMERICAL-METHODS;
D O I
10.1016/j.apnum.2012.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the error analysis of generalized polynomial chaos (gPC) for nonlinear random ordinary differential equations. The analysis shows that the global error mainly relies on the projection error and the numerical error. For the deterministic systems obtained from the gPC method, a kind of numerical approach with error analysis is given. At last, a numerical experiment is carried out to support the theoretical results. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1954 / 1964
页数:11
相关论文
共 50 条
  • [1] Generalized polynomial chaos for nonlinear random delay differential equations
    Shi, Wenjie
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2017, 115 : 16 - 31
  • [2] Generalized polynomial chaos for nonlinear random pantograph equations
    Wen-jie Shi
    Cheng-jian Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 685 - 700
  • [3] Generalized Polynomial Chaos for Nonlinear Random Pantograph Equations
    Wen-jie SHI
    Cheng-jian ZHANG
    Acta Mathematicae Applicatae Sinica, 2016, 32 (03) : 685 - 700
  • [4] Generalized polynomial chaos for nonlinear random pantograph equations
    Shi, Wen-jie
    Zhang, Cheng-jian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (03): : 685 - 700
  • [5] Comparison of polynomial chaos and Monte Carlo for random ordinary differential equations
    Cayama, Jorgey
    Gonzalez-Parra, Gilberto
    CIENCIA E INGENIERIA, 2012, 33 (01): : 9 - 19
  • [6] Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique
    Cortes, J. -C.
    Romero, J. -V.
    Rosello, M. -D.
    Villanueva, R. -J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 50 : 1 - 15
  • [7] Adaptive generalized polynomial chaos for nonlinear random oscillators
    Lucor, D
    Karniadakis, GE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02): : 720 - 735
  • [8] Application of polynomial chaos to random partial differential equations
    Cayama, Jorge
    Gonzalez-Parra, Gilberto
    CIENCIA E INGENIERIA, 2013, 34 (02): : 101 - 110
  • [9] Polynomial Chaos for random fractional order differential equations
    Gonzalez-Parra, Gilberto
    Chen-Charpentier, Benito
    Arenas, Abraham J.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 123 - 130
  • [10] A POSTERIORI ERROR ANALYSIS OF STOCHASTIC DIFFERENTIAL EQUATIONS USING POLYNOMIAL CHAOS EXPANSIONS
    Butler, T.
    Dawson, C.
    Wildey, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1267 - 1291