Generalized Polynomial Chaos for Nonlinear Random Pantograph Equations

被引:3
|
作者
Wen-jie SHI [1 ]
Cheng-jian ZHANG [2 ]
机构
[1] School of mathematics and statistics,Huazhong University of Science and Technology
[2] School of Mathematics and Computer Science,Wuhan Textile University
基金
中国国家自然科学基金;
关键词
generalized polynomial chaos; random pantograph equations; error estimation; finite-dimensional noise;
D O I
暂无
中图分类号
O211.63 [随机微分方程];
学科分类号
摘要
This paper is concerned with the application of generalized polynomial chaos(gPC) method to nonlinear random pantograph equations. An error estimation of gPC method is derived. The global error analysis is given for the error arising from finite-dimensional noise(FDN) assumption, projection error, aliasing error and discretization error. In the end, with several numerical experiments, the theoretical results are further illustrated.
引用
收藏
页码:685 / 700
页数:16
相关论文
共 50 条
  • [1] Generalized polynomial chaos for nonlinear random pantograph equations
    Wen-jie Shi
    Cheng-jian Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 685 - 700
  • [2] Generalized polynomial chaos for nonlinear random pantograph equations
    Shi, Wen-jie
    Zhang, Cheng-jian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (03): : 685 - 700
  • [3] Generalized polynomial chaos for nonlinear random delay differential equations
    Shi, Wenjie
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2017, 115 : 16 - 31
  • [4] Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations
    Shi, Wenjie
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (12) : 1954 - 1964
  • [5] Adaptive generalized polynomial chaos for nonlinear random oscillators
    Lucor, D
    Karniadakis, GE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02): : 720 - 735
  • [6] Generalized polynomial chaos expansions for the random fractional Bateman equations
    Jornet, Marc
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 479
  • [7] Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique
    Cortes, J. -C.
    Romero, J. -V.
    Rosello, M. -D.
    Villanueva, R. -J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 50 : 1 - 15
  • [8] Generalized Decoupled Polynomial Chaos for Nonlinear Circuits With Many Random Parameters
    Manfredi, Paolo
    Vande Ginste, Dries
    De Zutter, Daniel
    Canavero, Flavio G.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (08) : 505 - 507
  • [9] Generalized polynomial chaos and random oscillators
    Lucor, D
    Su, CH
    Karniadakis, GE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (03) : 571 - 596
  • [10] A Taylor polynomial approach for solving generalized pantograph equations with nonhomogenous term
    Sezer, Mehmet
    Yalcinbas, Salih
    Guelsu, Mustafa
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (07) : 1055 - 1063