Adaptive generalized polynomial chaos for nonlinear random oscillators

被引:53
|
作者
Lucor, D [1 ]
Karniadakis, GE [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2004年 / 26卷 / 02期
关键词
uncertainty; Duffing oscillator; polynomial chaos; stochastic modeling;
D O I
10.1137/S1064827503427984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solution of nonlinear random oscillators subject to stochastic forcing is investigated numerically. In particular, solutions to the random Duffing oscillator with random Gaussian and non-Gaussian excitations are obtained by means of the generalized polynomial chaos (GPC). Adaptive procedures are proposed to lower the increased computational cost of the GPC approach in large-dimensional spaces. Adaptive schemes combined with the use of an enriched representation of the system improve the accuracy of the GPC approach by reordering the random modes according to their magnification by the system.
引用
收藏
页码:720 / 735
页数:16
相关论文
共 50 条
  • [1] Generalized polynomial chaos and random oscillators
    Lucor, D
    Su, CH
    Karniadakis, GE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (03) : 571 - 596
  • [2] Polynomial chaos expansions for optimal control of nonlinear random oscillators
    Peng, Yong-Bo
    Ghanem, Roger
    Li, Jie
    JOURNAL OF SOUND AND VIBRATION, 2010, 329 (18) : 3660 - 3678
  • [3] Generalized polynomial chaos for nonlinear random pantograph equations
    Wen-jie Shi
    Cheng-jian Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 685 - 700
  • [4] Generalized Polynomial Chaos for Nonlinear Random Pantograph Equations
    Wen-jie SHI
    Cheng-jian ZHANG
    ActaMathematicaeApplicataeSinica, 2016, 32 (03) : 685 - 700
  • [5] Generalized polynomial chaos for nonlinear random pantograph equations
    Shi, Wen-jie
    Zhang, Cheng-jian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (03): : 685 - 700
  • [6] Generalized polynomial chaos for nonlinear random delay differential equations
    Shi, Wenjie
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2017, 115 : 16 - 31
  • [7] Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique
    Cortes, J. -C.
    Romero, J. -V.
    Rosello, M. -D.
    Villanueva, R. -J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 50 : 1 - 15
  • [8] Generalized Decoupled Polynomial Chaos for Nonlinear Circuits With Many Random Parameters
    Manfredi, Paolo
    Vande Ginste, Dries
    De Zutter, Daniel
    Canavero, Flavio G.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (08) : 505 - 507
  • [9] Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations
    Shi, Wenjie
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (12) : 1954 - 1964
  • [10] Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration
    Li, R
    Ghanem, R
    PROBABILISTIC ENGINEERING MECHANICS, 1998, 13 (02) : 125 - 136