Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations

被引:19
|
作者
Shi, Wenjie [1 ]
Zhang, Chengjian [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
Generalized polynomial chaos; Uncertainty quantification; Nonlinear random ordinary differential equations; Error analysis; MODELING UNCERTAINTY; NUMERICAL-METHODS;
D O I
10.1016/j.apnum.2012.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the error analysis of generalized polynomial chaos (gPC) for nonlinear random ordinary differential equations. The analysis shows that the global error mainly relies on the projection error and the numerical error. For the deterministic systems obtained from the gPC method, a kind of numerical approach with error analysis is given. At last, a numerical experiment is carried out to support the theoretical results. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1954 / 1964
页数:11
相关论文
共 50 条
  • [41] Ordinary differential equations and generalized functions
    Hermann, R
    Oberguggenberger, M
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 85 - 98
  • [42] Some recommendations for applying gPC (generalized polynomial chaos) to modeling: An analysis through the Airy random differential equation
    Chen-Charpentier, Benito M.
    Cortes, J. -C.
    Romero, J. -V.
    Rosello, M. -D.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4208 - 4218
  • [43] An adaptive multi-element generalized polynomial chaos method for stochastic differential equations
    Wan, XL
    Karniadakis, GE
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 209 (02) : 617 - 642
  • [44] LOCAL POLYNOMIAL CHAOS EXPANSION FOR LINEAR DIFFERENTIAL EQUATIONS WITH HIGH DIMENSIONAL RANDOM INPUTS
    Chen, Yi
    Jakeman, John
    Gittelson, Claude
    Xiu, Dongbin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A79 - A102
  • [45] Dynamical Polynomial Chaos Expansions and Long Time Evolution of Differential Equations with Random Forcing
    Ozen, H. Cagan
    Bal, Guillaume
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 609 - 635
  • [46] Dynamical chaos in two-dimensional nonlinear nonautonomous systems of ordinary differential equations
    Magnitskii, N. A.
    Sidorov, S. V.
    DIFFERENTIAL EQUATIONS, 2006, 42 (11) : 1579 - 1586
  • [47] Dynamical chaos in two-dimensional nonlinear nonautonomous systems of ordinary differential equations
    N. A. Magnitskii
    S. V. Sidorov
    Differential Equations, 2006, 42 : 1579 - 1586
  • [48] Polynomial chaos functions and stochastic differential equations
    Williams, M. M. R.
    ANNALS OF NUCLEAR ENERGY, 2006, 33 (09) : 774 - 785
  • [49] Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations
    Jimenez, M. Navarro
    Le Maitre, O. P.
    Knio, O. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 378 - 402
  • [50] Polynomial Chaos Expansions for the Stability Analysis of Uncertain Delay Differential Equations
    Vermiglio, Rossana
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 278 - 303