Direct meshless local Petrov-Galerkin method for the two-dimensional Klein-Gordon equation

被引:18
|
作者
Darani, Mohammadreza Ahmadi [1 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Appl Math, POB 115, Shahrekord, Iran
关键词
Meshless methods; Generalized moving least squares approximation; Meshless local Petrov-Galerkin method; DMLPG technique; RADIAL BASIS FUNCTIONS; HEAT-CONDUCTION ANALYSIS; NUMERICAL-SOLUTION; MLPG METHOD; APPROXIMATION; SCHEME; SIMULATION; RBFS; GMLS; MLS;
D O I
10.1016/j.enganabound.2016.10.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we apply the direct meshless local Petrov-Galerkin (DMLPG) method to solve the two dimensional Klein-Gordon equations in both strong and weak forms. Low computational cost is the main property of this method compared with the original MLPG technique. The reason lies behind the approach of generalized moving least squares approximation where the discretized functionals, obtained from the PDE problem, are directly approximated from nodal values. This shifts the integration over polynomials rather than the MLS shape functions, leading to an extremely faster scheme. We will see that this method can successfully solve the problem with a reasonable accuracy.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Anisotropic transient thermoelasticity analysis in a two-dimensional decagonal quasicrystal using meshless local Petrov-Galerkin (MLPG) method
    Hosseini, Seyed Mahmoud
    Sladek, Jan
    Sladek, Vladimir
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 66 : 275 - 295
  • [32] A meshless local Petrov-Galerkin method for geometrically nonlinear problems
    Xiong, YB
    Long, SY
    Hu, DA
    Li, GY
    [J]. ACTA MECHANICA SOLIDA SINICA, 2005, 18 (04) : 348 - 356
  • [33] Improving the Mixed Formulation for Meshless Local Petrov-Galerkin Method
    Fonseca, Alexandre R.
    Correa, Bruno C.
    Silva, Elson J.
    Mesquita, Renato C.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 2907 - 2910
  • [34] Meshless Local Petrov-Galerkin Method for Heat Transfer Analysis
    Rao, Singiresu S.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 8A, 2014,
  • [35] A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS
    Xiong Yuanbo Long Shuyao Hu De’an Li Guangyao Department of Engineering Mechanics
    [J]. Acta Mechanica Solida Sinica, 2005, (04) : 348 - 356
  • [36] Imposing boundary conditions in the meshless local Petrov-Galerkin method
    Fonseca, A. R.
    Viana, S. A.
    Silva, E. J.
    Mesquita, R. C.
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2008, 2 (06) : 387 - 394
  • [37] Computational complexity and parallelization of the meshless local Petrov-Galerkin method
    Trobec, Roman
    Sterk, Marjan
    Robic, Borut
    [J]. COMPUTERS & STRUCTURES, 2009, 87 (1-2) : 81 - 90
  • [38] Treatment of Material Discontinuity in the Meshless Local Petrov-Galerkin Method
    Yuan, Xufei
    Gu, Gendai
    Zhao, Meiling
    [J]. PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 157 - 161
  • [39] Characterizing soil properties by the meshless local Petrov-Galerkin method
    Sheu G.Y.
    [J]. Geotechnical and Geological Engineering, 2007, 25 (04) : 473 - 486
  • [40] Meshless local Petrov-Galerkin method for rotating Rayleigh beam
    Panchore, Vijay
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2022, 81 (05) : 607 - 616