Spectral solution of delayed random walks

被引:0
|
作者
Bhat, H. S. [1 ]
Kumar, N. [1 ]
机构
[1] Univ Calif, Appl Math Unit, Merced, CA 95343 USA
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 04期
关键词
PERSISTENT;
D O I
10.1103/PhysRevE.86.045701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a spectral method for computing the probability density function for delayed random walks; for such problems, the method is exact to machine precision and faster than existing approaches. In conjunction with a step function approximation and the weak Euler-Maruyama discretization, the spectral method can be applied to nonlinear stochastic delay differential equations (SDDE). In essence, this means approximating the SDDE by a delayed random walk, which is then solved using the spectral method. We carry out tests for a particular nonlinear SDDE that show that this method captures the solution without the need for Monte Carlo sampling.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] DELAYED RANDOM-WALKS
    OHIRA, T
    MILTON, JG
    PHYSICAL REVIEW E, 1995, 52 (03): : 3277 - 3280
  • [2] Delayed random walks and control
    Hosaka, Tadaaki
    Ohira, Toru
    FLOW DYNAMICS, 2006, 832 : 487 - +
  • [3] Repulsive delayed random walks
    Hosaka, T
    Ohira, T
    FLUCTUATIONS AND NOISE IN BIOLOGICAL, BIOPHYSICAL, AND BIOMEDICAL SYSTEMS II, 2004, 5467 : 123 - 130
  • [4] Oscillatory correlation of delayed random walks
    Ohira, T
    PHYSICAL REVIEW E, 1997, 55 (02) : R1255 - R1258
  • [5] SPECTRAL ANALYSIS OF HYPOELLIPTIC RANDOM WALKS
    Lebeau, Gilles
    Michel, Laurent
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2015, 14 (03) : 451 - 491
  • [6] Random walks in generalized delayed recursive trees
    孙伟刚
    张静远
    陈关荣
    Chinese Physics B, 2013, 22 (10) : 658 - 664
  • [7] Random walks in generalized delayed recursive trees
    Sun Wei-Gang
    Zhang Jing-Yuan
    Chen Guan-Rong
    CHINESE PHYSICS B, 2013, 22 (10)
  • [8] Random walks on jammed networks: Spectral properties
    Lechman, Jeremy B.
    Bond, Stephen D.
    Bolintineanu, Dan S.
    Grest, Gary S.
    Yarrington, Cole D.
    Silbert, Leonardo E.
    PHYSICAL REVIEW E, 2019, 100 (01)
  • [9] Spectral homogenization of reversible random walks on Zd in a random environment
    Boivin, D
    Depauw, J
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 104 (01) : 29 - 56
  • [10] Random walks, spectral radii, and Ramanujan graphs
    Nagnibeda, T
    RANDOM WALKS AND GEOMETRY, 2004, : 487 - 500