On Jakimovski-Leviatan-Paltanea approximating operators involving Boas-Buck-type polynomials

被引:1
|
作者
Ansari, Khursheed J. [1 ]
Salman, M. A. [2 ]
Mursaleen, M. [3 ,4 ]
Al-Abied, A. H. H. [5 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
[2] Community Coll Qatar, Math & Sci Dept, POB 7344, Doha, Qatar
[3] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[5] Dhamar Univ, Dept Math, Dhamar, Yemen
关键词
Szasz operators; Appell polynomials; Phillips operators; Modulus of continuity; Korovkin's theorem; Boas-Buck-type polynomials; INTEGRAL-OPERATORS;
D O I
10.1016/j.jksus.2020.08.007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A sequence of approximating operators is constructed in the present article with the help of Boas-Bucktype polynomials (BB-polynomials). We called this constructed operator as jakimovski-Leviatan-Paltdnea operators (JLP-operators) involving BB-polynomials. We establish some approximation properties of approximating operators converging towards the function to be approximated. We investigate versatile Korovkin-type property and also demonstrate the rate of convergence. Moreover, some approximation results are given in the weighted spaces. Furthermore, a Voronoskaja type theorem is also proved as well as approximation result when functions belong to the Lipschitzian class. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页码:3018 / 3025
页数:8
相关论文
共 50 条
  • [1] Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials
    Mursaleen, M.
    AL-Abeid, A. A. H.
    Ansari, Khursheed J.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1251 - 1265
  • [2] APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS
    Agrawal, P. N.
    Kumar, Ajay
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1522 - 1536
  • [3] APPROXIMATION BY STANCU TYPE JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS
    Kumar, Alok
    Vandana
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 936 - 948
  • [4] On the Chlodowsky variant of Jakimovski-Leviatan-Paltanea Operators
    Dalmanoglu, Ozge
    Orkcu, Mediha
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (03): : 821 - 833
  • [5] Convergence Rate of Szasz Operators Involving Boas-Buck-Type Polynomials
    Yilik, Ozlem Oksuzer
    Garg, Tarul
    Agrawal, P. N.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (01) : 13 - 22
  • [6] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470
  • [7] On Some Extensions of Szasz Operators Including Boas-Buck-Type Polynomials
    Sucu, Sezgin
    Icoz, Gurhan
    Varma, Serhan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [8] Approximation by Chlodowsky type of Szasz operators based on Boas-Buck-type polynomials
    Mursaleen, Mohammad
    Al-Abied, Ahmed Hussin
    Acu, Ana Maria
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2243 - 2259
  • [9] Jakimovski-Leviatan operators of Kantorovich type involving multiple Appell polynomials
    Gupta, Pooja
    Acu, Ana Maria
    Agrawal, Purshottam Narain
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 73 - 82
  • [10] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024