Bayesian penalized B-spline estimation approach for epidemic models

被引:2
|
作者
Meng, Lixin [1 ]
Tao, Jian [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, KLAS & NENU Branch Collaborat Innovat Ctr Assessm, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian method; epidemic model; Kermack-McKendrick model; MCMC; ordinary differential equation; parameter estimation; penalized B-spline; PARAMETER-ESTIMATION; DIFFERENTIAL-EQUATIONS; DYNAMIC-MODELS;
D O I
10.1080/00949655.2016.1193600
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ordinary differential equations (ODEs) are normally used to model dynamic processes in applied sciences such as biology, engineering, physics, and many other areas. In these models, the parameters are usually unknown, and thus they are often specified artificially or empirically. Alternatively, a feasible method is to estimate the parameters based on observed data. In this study, we propose a Bayesian penalized B-spline approach to estimate the parameters and initial values for ODEs used in epidemiology. We evaluated the efficiency of the proposed method based on simulations using the Markov chain Monte Carlo algorithm for the Kermack-McKendrick model. The proposed approach is also illustrated based on a real application to the transmission dynamics of hepatitis C virus in mainland China.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 50 条
  • [1] Bayesian adaptive B-spline estimation in proportional hazards frailty models
    Sharef, Emmanuel
    Strawderman, Robert L.
    Ruppert, David
    Cowen, Mark
    Halasyamani, Lakshmi
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 606 - 642
  • [2] EM estimation of the B-spline copula with penalized pseudo-likelihood functions
    Dou, Xiaoling
    Kuriki, Satoshi
    Lin, Gwo Dong
    Richards, Donald
    STATISTICAL PAPERS, 2025, 66 (01)
  • [3] Bayesian nonparametric spectral density estimation using B-spline priors
    Matthew C. Edwards
    Renate Meyer
    Nelson Christensen
    Statistics and Computing, 2019, 29 : 67 - 78
  • [4] Bayesian nonparametric spectral density estimation using B-spline priors
    Edwards, Matthew C.
    Meyer, Renate
    Christensen, Nelson
    STATISTICS AND COMPUTING, 2019, 29 (01) : 67 - 78
  • [5] Data Assimilation using Bayesian Filters and B-spline Geological Models
    Duan, Lian
    Farmer, Chris
    Hoteit, Ibrahim
    Luo, Xiaodong
    Moroz, Irene
    INTERNATIONAL CONFERENCE ON INVERSE PROBLEMS 2010, 2011, 290
  • [6] B-spline estimation in varying coefficient models with correlated errors
    Liu, Yanping
    Yin, Juliang
    AIMS MATHEMATICS, 2021, 7 (03): : 3509 - 3523
  • [7] B-spline estimation for spatial data
    Tang Qingguo
    Cheng Longsheng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (02) : 197 - 217
  • [8] Componentwise B-spline estimation for varying coefficient models with longitudinal data
    Tang Qingguo
    Cheng Longsheng
    Statistical Papers, 2012, 53 : 629 - 652
  • [9] Componentwise B-spline estimation for varying coefficient models with longitudinal data
    Tang Qingguo
    Cheng Longsheng
    STATISTICAL PAPERS, 2012, 53 (03) : 629 - 652
  • [10] Comparing B-spline and Spline models for FO modelling
    Lolive, Damien
    Barbot, Nelly
    Boeffard, Olivier
    TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2006, 4188 : 423 - 430