Bayesian penalized B-spline estimation approach for epidemic models

被引:2
|
作者
Meng, Lixin [1 ]
Tao, Jian [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, KLAS & NENU Branch Collaborat Innovat Ctr Assessm, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian method; epidemic model; Kermack-McKendrick model; MCMC; ordinary differential equation; parameter estimation; penalized B-spline; PARAMETER-ESTIMATION; DIFFERENTIAL-EQUATIONS; DYNAMIC-MODELS;
D O I
10.1080/00949655.2016.1193600
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ordinary differential equations (ODEs) are normally used to model dynamic processes in applied sciences such as biology, engineering, physics, and many other areas. In these models, the parameters are usually unknown, and thus they are often specified artificially or empirically. Alternatively, a feasible method is to estimate the parameters based on observed data. In this study, we propose a Bayesian penalized B-spline approach to estimate the parameters and initial values for ODEs used in epidemiology. We evaluated the efficiency of the proposed method based on simulations using the Markov chain Monte Carlo algorithm for the Kermack-McKendrick model. The proposed approach is also illustrated based on a real application to the transmission dynamics of hepatitis C virus in mainland China.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 50 条
  • [31] A B-spline approach for empirical mode decompositions
    Chen, QH
    Huang, N
    Riemenschneider, S
    Xu, YS
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) : 171 - 195
  • [32] An approach to a B-spline description of experimental distributions
    Anykeyev, VB
    Popov, AV
    Zhigunov, VP
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1996, 372 (03): : 482 - 488
  • [33] M-estimation and B-spline approximation for varying coefficient models with longitudinal data
    Tang Qingguo
    Cheng Longsheng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (07) : 611 - 625
  • [34] B-spline estimation for partially linear varying coefficient composite quantile regression models
    Jin, Jun
    Hao, Chenyan
    Ma, Tiefeng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (21) : 5322 - 5335
  • [35] alpha B-spline: A linear singular blending B-spline
    Loe, KF
    VISUAL COMPUTER, 1996, 12 (01): : 18 - 25
  • [36] A B-spline approach for empirical mode decompositions
    Qiuhui Chen
    Norden Huang
    Sherman Riemenschneider
    Yuesheng Xu
    Advances in Computational Mathematics, 2006, 24 : 171 - 195
  • [37] Nonparametric density estimation with nonuniform B-spline bases
    Wang, Xuhui
    Zhao, Yanchun
    Ni, Qian
    Tang, Shuo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [38] B-spline estimation of regression functions with errors in variable
    Koo, JY
    Lee, KW
    STATISTICS & PROBABILITY LETTERS, 1998, 40 (01) : 57 - 66
  • [39] B-Spline Modeling of Road Surfaces for Freespace Estimation
    Wedel, Andreas
    Franke, Uwe
    Badino, Hernan
    Cremers, Daniel
    2008 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, 2008, : 776 - +
  • [40] Adaptive Nonparametric Density Estimation with B-Spline Bases
    Zhao, Yanchun
    Zhang, Mengzhu
    Ni, Qian
    Wang, Xuhui
    MATHEMATICS, 2023, 11 (02)