Bayesian penalized B-spline estimation approach for epidemic models

被引:2
|
作者
Meng, Lixin [1 ]
Tao, Jian [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, KLAS & NENU Branch Collaborat Innovat Ctr Assessm, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian method; epidemic model; Kermack-McKendrick model; MCMC; ordinary differential equation; parameter estimation; penalized B-spline; PARAMETER-ESTIMATION; DIFFERENTIAL-EQUATIONS; DYNAMIC-MODELS;
D O I
10.1080/00949655.2016.1193600
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ordinary differential equations (ODEs) are normally used to model dynamic processes in applied sciences such as biology, engineering, physics, and many other areas. In these models, the parameters are usually unknown, and thus they are often specified artificially or empirically. Alternatively, a feasible method is to estimate the parameters based on observed data. In this study, we propose a Bayesian penalized B-spline approach to estimate the parameters and initial values for ODEs used in epidemiology. We evaluated the efficiency of the proposed method based on simulations using the Markov chain Monte Carlo algorithm for the Kermack-McKendrick model. The proposed approach is also illustrated based on a real application to the transmission dynamics of hepatitis C virus in mainland China.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 50 条
  • [41] B-SPLINE CHANNEL ESTIMATION FOR MULTIUSER LTE UPLINK
    Zakharov, Y.
    Zheng, D.
    2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, 2015, : 908 - 912
  • [42] Estimation of complicated distributions using B-spline functions
    Zong, Z
    Lam, KY
    STRUCTURAL SAFETY, 1998, 20 (04) : 341 - 355
  • [43] Bayesian penalized spline models for the analysis of spatio-temporal count data
    Bauer, Cici
    Wakefield, Jon
    Rue, Havard
    Self, Steve
    Feng, Zijian
    Wang, Yu
    STATISTICS IN MEDICINE, 2016, 35 (11) : 1848 - 1865
  • [44] Comparison of missing data methods in clustered survival data using Bayesian adaptive B-Spline estimation
    Yoo, Hanna
    Lee, Jae Won
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2018, 25 (02) : 159 - 172
  • [45] Adaptive Regularization of B-Spline Models for Scientific Data
    Lenz, David
    Yeh, Raine
    Mahadevan, Vijay
    Grindeanu, Iulian
    Peterka, Tom
    COMPUTATIONAL SCIENCE - ICCS 2022, PT I, 2022, : 150 - 163
  • [46] B-Spline Reduced Order Models of the Multidimensional Fields
    Lixandru, Ion
    Marinescu, Vasile
    Frumusanu, Gabriel
    Craciun, Marian Viorel
    Epureanu, Alexandru
    MATHEMATICAL METHODS, SYSTEMS THEORY AND CONTROL, 2009, : 224 - +
  • [47] Penalized spline estimation for partially linear single-index models
    Yu, Y
    Ruppert, D
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) : 1042 - 1054
  • [48] Bayesian Models combining Legendre and B-spline polynomials for genetic analysis of multiple lactations in Gyr cattle
    de Oliveira, Hinayah Rojas
    Fonseca e Silva, Fabyano
    Gualberto Barbosa da Silva, Marcos VinIcius
    Barbosa Dias de Siqueira, Otavio Henrique Gomes
    Machado, Marco Antonio
    do Carmo Panetto, Joao Claudio
    Gloria, Leonardo Siqueira
    Brito, Luiz Fernando
    LIVESTOCK SCIENCE, 2017, 201 : 78 - 84
  • [49] ALTERNATE SPLINE - A GENERALIZED B-SPLINE
    BIEN, AP
    CHENG, FH
    JOURNAL OF APPROXIMATION THEORY, 1987, 51 (02) : 138 - 159
  • [50] Constrained global optimization of multivariate polynomials using polynomial B-spline form and B-spline consistency prune approach
    Gawali, Deepak D.
    Patil, Bhagyesh V.
    Zidna, Ahmed
    Nataraj, P. S. V.
    RAIRO-OPERATIONS RESEARCH, 2021, 55 (06) : 3743 - 3771