B-spline estimation for spatial data

被引:3
|
作者
Tang Qingguo [1 ,2 ]
Cheng Longsheng [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing 210094, Peoples R China
[2] PLA Univ Sci & Technol, Inst Sci, Nanjing 210007, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
spatial data; regression; B-spline estimators; convergence rate; KERNEL DENSITY-ESTIMATION; VARYING COEFFICIENT MODELS; NONLINEAR TIME-SERIES; LONGITUDINAL DATA; LINEAR-PROCESSES; REGRESSION-MODELS; RANDOM-FIELDS; APPROXIMATION; CONSISTENCY;
D O I
10.1080/10485250903272569
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Data collected on the surface of the earth often have spatial interaction. In this paper, a global smoothing procedure is developed using a tensor product of B-spline function approximations for estimating the spatial multi-dimensional conditional regression function. Under mild regularity assumptions, the global convergence rates of the B-spline estimators are established. Asymptotic results show that our B-spline estimators achieve the optimal convergence rate. The asymptotic normality of our estimator is also derived. Finite sample properties of our procedures are studied through Monte Carlo simulations.
引用
收藏
页码:197 / 217
页数:21
相关论文
共 50 条