Generalized fractional integral operators and the multivariable H-function

被引:3
|
作者
Agarwal, Praveen [1 ]
Rogosin, Sergei V. [2 ]
Karimov, Erkinjon T. [3 ]
Chand, Mehar [4 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[2] Belarusian State Univ, Dept Econ, Minsk 220030, BELARUS
[3] Natl Univ Uzbekistan, Inst Math, Tashkent 100125, Uzbekistan
[4] Fateh Coll Women, Dept Math, Bathinda 151103, India
关键词
Marichev-Saigo-Maeda fractional integral operator; multivariable H-function; first class of multivariable polynomials; Mittag-Leffler function;
D O I
10.1186/s13660-015-0878-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main object of the present paper is to establish new fractional integral formulas (of Marichev-Saigo-Maeda type) involving the products of the multivariable H-functions and the first class of multivariable polynomials due to Srivastava and Garg. All the results derived here are of general character and can yield a number of (new and known) results in the theory of fractional calculus.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [41] On Fractional q-Integral Operators Involving the Basic Analogue of Multivariable Aleph-Function
    Kumar, Dinesh
    Ayant, Frederic
    Nisar, Kottakkaran Sooppy
    Suthar, Daya Lal
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2023, 93 (02) : 211 - 218
  • [42] On generalized fractional integral operator involving Fox's H-function and its applications to unified subclass of prestarlike functions with negative coefficients
    Soybas, D.
    Joshi, S. B.
    Pawar, H. H.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (01) : 289 - 298
  • [43] A GENERAL VOLTERRA-TYPE FRACTIONAL EQUATION ASSOCIATED WITH AN INTEGRAL OPERATOR WITH THE H-FUNCTION IN THE KERNEL
    Harjule, Priyanka
    Jain, Rashmi
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2015, 14 (3-4): : 289 - 294
  • [44] INTEGRAL TRANSFORM ASSOCIATED WITH H-FUNCTION OF 2 VARIABLES
    SAXENA, RK
    MODI, GC
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1976, 29 (01): : 29 - 32
  • [45] GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND FRACTIONAL MAXIMAL OPERATORS IN THE FRAMEWORK OF MORREY SPACES
    Sawano, Yoshihiro
    Sugano, Satoko
    Tanaka, Hitoshi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) : 6481 - 6503
  • [46] Inequalities by Means of Generalized Proportional Fractional Integral Operators with Respect to Another Function
    Rashid, Saima
    Jarad, Fahd
    Noor, Muhammad Aslam
    Kalsoom, Humaira
    Chu, Yu-Ming
    MATHEMATICS, 2019, 7 (12)
  • [47] Multilinear Fractional Integral Operators with Generalized Kernels
    Lin, Yan
    Zhao, Yuhang
    Yang, Shuhui
    TAIWANESE JOURNAL OF MATHEMATICS, 2024,
  • [48] On an integral and consequent fractional integral operators via generalized convexity
    He, Wenfeng
    Farid, Ghulam
    Mahreen, Kahkashan
    Zahra, Moquddsa
    Chen, Nana
    AIMS MATHEMATICS, 2020, 5 (06): : 7632 - 7648
  • [49] Generalized integral inequalities for ABK-fractional integral operators
    Butt, Saad Ihsan
    Set, Erhan
    Yousaf, Saba
    Abdeljawad, Thabet
    Shatanawi, Wasfi
    AIMS MATHEMATICS, 2021, 6 (09): : 10164 - 10191
  • [50] INVERSION FORMULAS FOR INTEGRAL TRANSFORMATION WITH H-FUNCTION AS KERNEL
    BUSCHMAN, RG
    SRIVASTA.HM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (02): : A271 - A271