Generalized fractional integral operators and the multivariable H-function

被引:3
|
作者
Agarwal, Praveen [1 ]
Rogosin, Sergei V. [2 ]
Karimov, Erkinjon T. [3 ]
Chand, Mehar [4 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[2] Belarusian State Univ, Dept Econ, Minsk 220030, BELARUS
[3] Natl Univ Uzbekistan, Inst Math, Tashkent 100125, Uzbekistan
[4] Fateh Coll Women, Dept Math, Bathinda 151103, India
关键词
Marichev-Saigo-Maeda fractional integral operator; multivariable H-function; first class of multivariable polynomials; Mittag-Leffler function;
D O I
10.1186/s13660-015-0878-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main object of the present paper is to establish new fractional integral formulas (of Marichev-Saigo-Maeda type) involving the products of the multivariable H-functions and the first class of multivariable polynomials due to Srivastava and Garg. All the results derived here are of general character and can yield a number of (new and known) results in the theory of fractional calculus.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] FINITE SUMMATION FORMULAE FOR MULTIVARIABLE H-FUNCTION
    Sharma, C. K.
    Singh, Roshani
    TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (04): : 375 - 377
  • [22] COMPOSITIONS OF SAIGO FRACTIONAL INTEGRAL OPERATORS WITH GENERALIZED VOIGT FUNCTION
    Nair, Deepa H.
    Pathan, M. A.
    MATEMATICKI VESNIK, 2014, 66 (03): : 323 - 332
  • [23] Estimation of generalized fractional integral operators with nonsingular function as a kernel
    Nayab, Iqra
    Mubeen, Shahid
    Ali, Rana Safdar
    Rahman, Gauhar
    Abdel-Aty, Abdel-Haleem
    Mahmoud, Emad E.
    Nisar, Kottakkaran Sooppy
    AIMS MATHEMATICS, 2021, 6 (05): : 4492 - 4506
  • [24] CONVOLUTION INTEGRAL-EQUATIONS INVOLVING A GENERAL-CLASS OF POLYNOMIALS AND THE MULTIVARIABLE H-FUNCTION
    GUPTA, KC
    JAIN, R
    AGRAWAL, P
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1995, 105 (02): : 187 - 192
  • [25] A general fractional differential equation associated with an integral operator with the H-function in the kernel
    Srivastava, H. M.
    Harjule, P.
    Jain, R.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (01) : 112 - 126
  • [26] Fractional integrals and derivatives of H-function
    Kilbas, AA
    Saigo, M
    DOKLADY AKADEMII NAUK BELARUSI, 1997, 41 (04): : 34 - 39
  • [27] A general fractional differential equation associated with an integral operator with the H-function in the kernel
    H. M. Srivastava
    P. Harjule
    R. Jain
    Russian Journal of Mathematical Physics, 2015, 22 : 112 - 126
  • [28] A FINITE INTEGRAL INVOLVING H-FUNCTION
    GOYAL, GK
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1969, 39 : 201 - &
  • [29] A FINITE INTEGRAL INVOLVING A JACOBI POLYNOMIAL AND A GENERALIZED H-FUNCTION OF 2 VARIABLES
    SINGH, N
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (11): : 1497 - 1503
  • [30] Certain fractional derivative formulae involving the product of a general class of polynomials and the multivariable H-function
    Soni, RC
    Singh, D
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (04): : 551 - 562