Generalized fractional integral operators and the multivariable H-function

被引:3
|
作者
Agarwal, Praveen [1 ]
Rogosin, Sergei V. [2 ]
Karimov, Erkinjon T. [3 ]
Chand, Mehar [4 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[2] Belarusian State Univ, Dept Econ, Minsk 220030, BELARUS
[3] Natl Univ Uzbekistan, Inst Math, Tashkent 100125, Uzbekistan
[4] Fateh Coll Women, Dept Math, Bathinda 151103, India
关键词
Marichev-Saigo-Maeda fractional integral operator; multivariable H-function; first class of multivariable polynomials; Mittag-Leffler function;
D O I
10.1186/s13660-015-0878-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main object of the present paper is to establish new fractional integral formulas (of Marichev-Saigo-Maeda type) involving the products of the multivariable H-functions and the first class of multivariable polynomials due to Srivastava and Garg. All the results derived here are of general character and can yield a number of (new and known) results in the theory of fractional calculus.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] On Transformation Involving Basic Analogue of Multivariable H-Function
    Kumar, Dinesh
    Ayant, Frederic
    Tariboon, Jessada
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [32] A Study on Generalized Multivariable Mittag-Leffler Function via Generalized Fractional Calculus Operators
    Suthar, D. L.
    Andualem, Mitku
    Debalkie, Belete
    JOURNAL OF MATHEMATICS, 2019, 2019
  • [33] A Study of Generalized Weyl Differintegral Operator Associated with a General Class of Polynomials and the Multivariable H-function
    Soni, Ramesh Chandra
    Wiseman, Monica
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (02): : 229 - 235
  • [34] SOME DOUBLE INTEGRALS INVOLVING THE MULTIVARIABLE H-FUNCTION
    SHARMA, CK
    SAHAY, R
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (02): : 170 - 173
  • [35] BOUNDEDNESS OF GENERALIZED FRACTIONAL INTEGRAL OPERATORS
    Tang Canqin (Changde Normal University
    Approximation Theory and Its Applications, 2002, (04) : 38 - 54
  • [36] Fractional differential equation pertaining to an integral operator involving incomplete H-function in the kernel
    Bansal, Manish Kumar
    Lal, Shiv
    Kumar, Devendra
    Kumar, Sunil
    Singh, Jagdev
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (13) : 10952 - 10963
  • [37] FRACTIONAL INTEGRAL OPERATORS INVOLVING THE PRODUCT OF SRIVASTAVA POLYNOMIALS AND SRIVASTAVA-PANDA MULTIVARIABLE H-FUNCTIONS OF GENERALIZED ARGUMENTS
    Chaurasia, V. B. L.
    Pandey, S. C.
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (02): : 131 - 136
  • [38] SIMULTANEOUS OPERATIONAL CALCULUS INVOLVING A PRODUCT OF A GENERAL-CLASS OF POLYNOMIALS, FOX H-FUNCTION AND THE MULTIVARIABLE H-FUNCTION
    CHAURASIA, VBL
    LAL, G
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1993, 103 (01): : 91 - 96
  • [39] SOME INTEGRALS INVOLVING THE LAURICELLA FUNCTIONS AND THE MULTIVARIABLE H-FUNCTION
    SHARMA, CK
    SINGH, I
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1990, 21 (06): : 597 - 604
  • [40] On Fractional q-Integral Operators Involving the Basic Analogue of Multivariable Aleph-Function
    Dinesh Kumar
    Frédéric Ayant
    Kottakkaran Sooppy Nisar
    Daya Lal Suthar
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2023, 93 : 211 - 218