Eigen-R2 for dissecting variation in high-dimensional studies

被引:14
|
作者
Chen, Lin S. [1 ]
Storey, John D. [1 ,2 ]
机构
[1] Princeton Univ, Lewis Sigler Inst, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
关键词
D O I
10.1093/bioinformatics/btn411
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We provide a new statistical algorithm and software package called 'eigen-R(2)' for dissecting the variation of a high-dimensional biological dataset with respect to other measured variables of interest. We apply eigen-R(2) to two real-life examples and compare it with simply averaging R(2) over many features.
引用
收藏
页码:2260 / 2262
页数:3
相关论文
共 50 条
  • [41] Analyzing high-dimensional gene expression and DNA methylation data with R
    Chaturvedi, Anoop
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2021, 184 (03) : 1154 - 1154
  • [42] High-Dimensional Bayesian Clustering with Variable Selection: The R Package bclus
    Nia, Vahid Partovi
    Davison, Anthony C.
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 47 (05): : 1 - 22
  • [43] R-Train plus : A Dynamic Structure for High-dimensional Data
    Ochin
    Biswas, Ranjit
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON RELIABILTY, OPTIMIZATION, & INFORMATION TECHNOLOGY (ICROIT 2014), 2014, : 105 - 110
  • [44] Random Subspace Method for high-dimensional regression with the R package regRSM
    Teisseyre, Pawel
    Klopotek, Robert A.
    Mielniczuk, Jan
    COMPUTATIONAL STATISTICS, 2016, 31 (03) : 943 - 972
  • [45] Variable Clustering in High-Dimensional Linear Regression: The R Package clere
    Yengo, Loic
    Jacques, Julien
    Biernacki, Christophe
    Canouil, Mickael
    R JOURNAL, 2016, 8 (01): : 92 - 106
  • [46] Random Subspace Method for high-dimensional regression with the R package regRSM
    Paweł Teisseyre
    Robert A. Kłopotek
    Jan Mielniczuk
    Computational Statistics, 2016, 31 : 943 - 972
  • [47] PGEE: An R Package for Analysis of Longitudinal Data with High-Dimensional Covariates
    Inan, Gul
    Wang, Lan
    R JOURNAL, 2017, 9 (01): : 393 - 402
  • [48] An inequality for the total variation distance between high-dimensional centered Gaussian laws
    Barabesi, Lucio
    Pratelli, Luca
    STATISTICS & PROBABILITY LETTERS, 2024, 211
  • [49] TAMING 2-COMPLEXES IN HIGH-DIMENSIONAL MANIFOLDS
    EDWARDS, CH
    DUKE MATHEMATICAL JOURNAL, 1965, 32 (03) : 479 - &
  • [50] High-dimensional, slow-time-varying process monitoring technique based on adaptive eigen subspace extraction method
    Feng, Xiaowei
    Kong, Xiangyu
    He, Chuan
    Luo, Jiayu
    JOURNAL OF PROCESS CONTROL, 2022, 117 : 122 - 131