PGEE: An R Package for Analysis of Longitudinal Data with High-Dimensional Covariates

被引:0
|
作者
Inan, Gul [1 ]
Wang, Lan [2 ]
机构
[1] Middle East Tech Univ, Dept Stat, TR-06800 Ankara, Turkey
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
来源
R JOURNAL | 2017年 / 9卷 / 01期
基金
美国国家科学基金会;
关键词
GENERALIZED ESTIMATING EQUATIONS; PARTIAL LINEAR-MODELS; DIVERGING NUMBER; SACCHAROMYCES-CEREVISIAE; COORDINATE DESCENT; VARIABLE SELECTION; REGRESSION-MODELS; CORRELATED DATA; GEE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce an R package PGEE that implements the penalized generalized estimating equations (GEE) procedure proposed byWang et al. (2012) to analyze longitudinal data with a large number of covariates. The PGEE package includes three main functions: CVfit, PGEE, and MGEE. The CVfit function computes the cross-validated tuning parameter for penalized generalized estimating equations. The function PGEE performs simultaneous estimation and variable selection for longitudinal data with high-dimensional covariates; whereas the function MGEE fits unpenalized GEE to the data for comparison. The R package PGEE is illustrated using a yeast cell-cycle gene expression data set.
引用
收藏
页码:393 / 402
页数:10
相关论文
共 50 条
  • [1] LongDat: an R package for covariate-sensitive longitudinal analysis of high-dimensional data
    Chen, Chia-Yu
    Loeber, Ulrike
    Forslund, Sofia K.
    [J]. BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [2] Variable selection for longitudinal data with high-dimensional covariates and dropouts
    Zheng, Xueying
    Fu, Bo
    Zhang, Jiajia
    Qin, Guoyou
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (04) : 712 - 725
  • [3] Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data
    Zhou, Fei
    Ren, Jie
    Liu, Yuwen
    Li, Xiaoxi
    Wang, Weiqun
    Wu, Cen
    [J]. GENES, 2022, 13 (03)
  • [4] Springer: An R package for bi-level variable selection of high-dimensional longitudinal data
    Zhou, Fei
    Liu, Yuwen
    Ren, Jie
    Wang, Weiqun
    Wu, Cen
    [J]. FRONTIERS IN GENETICS, 2023, 14
  • [5] Survival analysis with high-dimensional covariates
    Witten, Daniela M.
    Tibshirani, Robert
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2010, 19 (01) : 29 - 51
  • [6] ordinalgmifs: An R Package for Ordinal Regression in High-dimensional Data Settings
    Archer, Kellie J.
    Hou, Jiayi
    Zhou, Qing
    Ferber, Kyle
    Layne, John G.
    Gentry, Amanda E.
    [J]. CANCER INFORMATICS, 2014, 13 : 187 - 195
  • [7] CHEMIST: an R package for causal inference with high-dimensional error-prone covariates and misclassified treatments
    Chen, Li-Pang
    Hsu, Wei-Hsin
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023,
  • [8] HDclassif: An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data
    Berge, Laurent
    Bouveyron, Charles
    Girard, Stephane
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 46 (06): : 1 - 29
  • [9] Ultra high-dimensional semiparametric longitudinal data analysis
    Green, Brittany
    Lian, Heng
    Yu, Yan
    Zu, Tianhai
    [J]. BIOMETRICS, 2021, 77 (03) : 903 - 913
  • [10] Competing Risks Data Analysis with High-dimensional Covariates:An Application in Bladder Cancer
    Leili Tapak
    Massoud Saidijam
    Majid Sadeghifar
    Jalal Poorolajal
    Hossein Mahjub
    [J]. Genomics,Proteomics & Bioinformatics., 2015, (03) - 176