PGEE: An R Package for Analysis of Longitudinal Data with High-Dimensional Covariates

被引:0
|
作者
Inan, Gul [1 ]
Wang, Lan [2 ]
机构
[1] Middle East Tech Univ, Dept Stat, TR-06800 Ankara, Turkey
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
来源
R JOURNAL | 2017年 / 9卷 / 01期
基金
美国国家科学基金会;
关键词
GENERALIZED ESTIMATING EQUATIONS; PARTIAL LINEAR-MODELS; DIVERGING NUMBER; SACCHAROMYCES-CEREVISIAE; COORDINATE DESCENT; VARIABLE SELECTION; REGRESSION-MODELS; CORRELATED DATA; GEE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce an R package PGEE that implements the penalized generalized estimating equations (GEE) procedure proposed byWang et al. (2012) to analyze longitudinal data with a large number of covariates. The PGEE package includes three main functions: CVfit, PGEE, and MGEE. The CVfit function computes the cross-validated tuning parameter for penalized generalized estimating equations. The function PGEE performs simultaneous estimation and variable selection for longitudinal data with high-dimensional covariates; whereas the function MGEE fits unpenalized GEE to the data for comparison. The R package PGEE is illustrated using a yeast cell-cycle gene expression data set.
引用
收藏
页码:393 / 402
页数:10
相关论文
共 50 条
  • [41] Online Decision Making with High-Dimensional Covariates
    Bastani, Hamsa
    Bayati, Mohsen
    [J]. OPERATIONS RESEARCH, 2020, 68 (01) : 276 - 294
  • [42] High-dimensional generalized semiparametric model for longitudinal data
    Taavoni, M.
    Arashi, M.
    [J]. STATISTICS, 2021, 55 (04) : 831 - 850
  • [43] cold: An R Package for the Analysis of Count Longitudinal Data
    Goncalves, M. Helena
    Cabral, M. Salome
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (03): : 1 - 34
  • [44] Variable Clustering in High-Dimensional Linear Regression: The R Package clere
    Yengo, Loic
    Jacques, Julien
    Biernacki, Christophe
    Canouil, Mickael
    [J]. R JOURNAL, 2016, 8 (01): : 92 - 106
  • [45] Random Subspace Method for high-dimensional regression with the R package regRSM
    Teisseyre, Pawel
    Klopotek, Robert A.
    Mielniczuk, Jan
    [J]. COMPUTATIONAL STATISTICS, 2016, 31 (03) : 943 - 972
  • [46] The R Package bild for the Analysis of Binary Longitudinal Data
    Helena Goncalves, M.
    Salome Cabral, M.
    Azzalini, Adelchi
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 46 (09): : 1 - 17
  • [47] Random Subspace Method for high-dimensional regression with the R package regRSM
    Paweł Teisseyre
    Robert A. Kłopotek
    Jan Mielniczuk
    [J]. Computational Statistics, 2016, 31 : 943 - 972
  • [48] A latent factor linear mixed model for high-dimensional longitudinal data analysis
    An, Xinming
    Yang, Qing
    Bentler, Peter M.
    [J]. STATISTICS IN MEDICINE, 2013, 32 (24) : 4229 - 4239
  • [49] High-Dimensional Longitudinal Genomic Data An analysis used for monitoring viral infections
    Carin, Lawrence
    Hero, Alfred, III
    Lucas, Joseph
    Dunson, David
    Chen, Minhua
    Henao, Ricardo
    Tibau-Puig, Arnau
    Zaas, Aimee
    Woods, Christopher W.
    Ginsburg, Geoffrey S.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (01) : 108 - 123
  • [50] Multivariate analysis of variance and change points estimation for high-dimensional longitudinal data
    Zhong, Ping-Shou
    Li, Jun
    Kokoszka, Piotr
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (02) : 375 - 405