Eigen-R2 for dissecting variation in high-dimensional studies

被引:14
|
作者
Chen, Lin S. [1 ]
Storey, John D. [1 ,2 ]
机构
[1] Princeton Univ, Lewis Sigler Inst, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
关键词
D O I
10.1093/bioinformatics/btn411
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We provide a new statistical algorithm and software package called 'eigen-R(2)' for dissecting the variation of a high-dimensional biological dataset with respect to other measured variables of interest. We apply eigen-R(2) to two real-life examples and compare it with simply averaging R(2) over many features.
引用
收藏
页码:2260 / 2262
页数:3
相关论文
共 50 条
  • [31] EUCLID: an outcome analysis tool for high-dimensional clinical studies
    Gayou, Olivier
    Parda, David S.
    Miften, Moyed
    PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (06): : 1705 - 1719
  • [32] Structural zeros in high-dimensional data with applications to microbiome studies
    Kaul, Abhishek
    Davidov, Ori
    Peddada, Shyamal D.
    BIOSTATISTICS, 2017, 18 (03) : 422 - 433
  • [33] Bias and High-Dimensional Adjustment in Observational Studies of Peer Effects
    Eckles, Dean
    Bakshy, Eytan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 507 - 517
  • [34] Survival Analysis with High-Dimensional Covariates: An Application in Microarray Studies
    Engler, David
    Li, Yi
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2009, 8 (01)
  • [35] Genome-wide association studies with high-dimensional phenotypes
    Marttinen, Pekka
    Gillberg, Jussi
    Havulinna, Aki
    Corander, Jukka
    Kaski, Samuel
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (04) : 413 - 431
  • [36] High-dimensional NMR methods for intrinsically disordered proteins studies
    Grudziaz, Katarzyna
    Zawadzka-Kazimierczuk, Anna
    Kozminski, Wiktor
    METHODS, 2018, 148 : 81 - 87
  • [37] Estimating and testing high-dimensional mediation effects in epigenetic studies
    Zhang, Haixiang
    Zheng, Yinan
    Zhang, Zhou
    Gao, Tao
    Joyce, Brian
    Yoon, Grace
    Zhang, Wei
    Schwartz, Joel
    Just, Allan
    Colicino, Elena
    Vokonas, Pantel
    Zhao, Lihui
    Lv, Jinchi
    Baccarelli, Andrea
    Hou, Lifang
    Liu, Lei
    BIOINFORMATICS, 2016, 32 (20) : 3150 - 3154
  • [38] Data visualization case studies for high-dimensional data validation
    Williams, Aaron R.
    STAT, 2021, 10 (01):
  • [39] Performance of a high-dimensional R/S method for Hurst exponent estimation
    Alvarez-Ramirez, Jose
    Echeverria, Juan C.
    Rodriguez, Eduardo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (26) : 6452 - 6462
  • [40] ordinalgmifs: An R Package for Ordinal Regression in High-dimensional Data Settings
    Archer, Kellie J.
    Hou, Jiayi
    Zhou, Qing
    Ferber, Kyle
    Layne, John G.
    Gentry, Amanda E.
    CANCER INFORMATICS, 2014, 13 : 187 - 195