MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT

被引:485
作者
Calinescu, Gruia [1 ]
Chekuri, Chandra [2 ]
Pal, Martin [3 ]
Vondrak, Jan [4 ]
机构
[1] IIT, Dept Comp Sci, Chicago, IL 60616 USA
[2] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[3] Google Inc, New York, NY 10018 USA
[4] IBM Almaden Res Ctr, San Jose, CA 95120 USA
关键词
monotone submodular set function; matroid; social welfare; generalized assignment problem; approximation algorithm; COMBINATORIAL AUCTIONS; ALGORITHM; APPROXIMATIONS; LOCATION;
D O I
10.1137/080733991
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let f : 2(X) -> R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem max(S is an element of I)f(S). It is known that the greedy algorithm yields a 1/2-approximation [M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, Math. Programming Stud., no. 8 (1978), pp. 73-87] for this problem. For certain special cases, e. g., max(|S|<= k)f(S), the greedy algorithm yields a (1 - 1/e)-approximation. It is known that this is optimal both in the value oracle model (where the only access to f is through a black box returning f(S) for a given set S) [G. L. Nemhauser and L. A. Wolsey, Math. Oper. Res., 3 (1978), pp. 177-188] and for explicitly posed instances assuming P not equal NP [U. Feige, J. ACM, 45 (1998), pp. 634-652]. In this paper, we provide a randomized (1 - 1/e)-approximation for any monotone submodular function and an arbitrary matroid. The algorithm works in the value oracle model. Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [J. Combin. Optim., 8 (2004), pp. 307-328], and a continuous greedy process that may be of independent interest. As a special case, our algorithm implies an optimal approximation for the submodular welfare problem in the value oracle model [J. Vondrak, Proceedings of the 38th ACM Symposium on Theory of Computing, 2008, pp. 67-74]. As a second application, we show that the generalized assignment problem (GAP) is also a special case; although the reduction requires |X| to be exponential in the original problem size, we are able to achieve a (1 - 1/e - o(1))-approximation for GAP, simplifying previously known algorithms. Additionally, the reduction enables us to obtain approximation algorithms for variants of GAP with more general constraints.
引用
收藏
页码:1740 / 1766
页数:27
相关论文
共 50 条
  • [41] Submodular Maximization Subject to a Knapsack Constraint Under Noise Models
    Ha, Dung T. K.
    Pham, Canh, V
    Hoang, Huan X.
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2022, 39 (06)
  • [42] Interactive Optimization of Submodular Functions Under Matroid Constraints
    Benabbou, Nawal
    Leroy, Cassandre
    Lust, Thibaut
    Perny, Patrice
    [J]. ALGORITHMIC DECISION THEORY, ADT 2021, 2021, 13023 : 307 - 322
  • [43] Non-Submodular Maximization with Matroid and Knapsack Constraints
    Wang, Yijing
    Du, Donglei
    Jiang, Yanjun
    Zhang, Xianzhao
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2021, 38 (05)
  • [44] A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice
    Qingqin Nong
    Jiazhu Fang
    Suning Gong
    Dingzhu Du
    Yan Feng
    Xiaoying Qu
    [J]. Journal of Combinatorial Optimization, 2020, 39 : 1208 - 1220
  • [45] Approximation Algorithms for k-Submodular Maximization Subject to a Knapsack Constraint
    Xiao, Hao
    Liu, Qian
    Zhou, Yang
    Li, Min
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [46] A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice
    Nong, Qingqin
    Fang, Jiazhu
    Gong, Suning
    Du, Dingzhu
    Feng, Yan
    Qu, Xiaoying
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (04) : 1208 - 1220
  • [47] An accelerated continuous greedy algorithm for maximizing strong submodular functions
    Zengfu Wang
    Bill Moran
    Xuezhi Wang
    Quan Pan
    [J]. Journal of Combinatorial Optimization, 2015, 30 : 1107 - 1124
  • [48] Maximizing k-submodular functions under budget constraint: applications and streaming algorithms
    Pham, Canh, V
    Vu, Quang C.
    Ha, Dung K. T.
    Nguyen, Tai T.
    Le, Nguyen D.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 723 - 751
  • [49] Maximizing k-submodular functions under budget constraint: applications and streaming algorithms
    Canh V. Pham
    Quang C. Vu
    Dung K. T. Ha
    Tai T. Nguyen
    Nguyen D. Le
    [J]. Journal of Combinatorial Optimization, 2022, 44 : 723 - 751
  • [50] Streaming Algorithms for Maximizing k-Submodular Functions with the Multi-knapsack Constraint
    Gong, Shu-Fang
    Liu, Bin
    Fang, Qi-Zhi
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,