MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT

被引:459
|
作者
Calinescu, Gruia [1 ]
Chekuri, Chandra [2 ]
Pal, Martin [3 ]
Vondrak, Jan [4 ]
机构
[1] IIT, Dept Comp Sci, Chicago, IL 60616 USA
[2] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[3] Google Inc, New York, NY 10018 USA
[4] IBM Almaden Res Ctr, San Jose, CA 95120 USA
关键词
monotone submodular set function; matroid; social welfare; generalized assignment problem; approximation algorithm; COMBINATORIAL AUCTIONS; ALGORITHM; APPROXIMATIONS; LOCATION;
D O I
10.1137/080733991
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let f : 2(X) -> R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem max(S is an element of I)f(S). It is known that the greedy algorithm yields a 1/2-approximation [M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, Math. Programming Stud., no. 8 (1978), pp. 73-87] for this problem. For certain special cases, e. g., max(|S|<= k)f(S), the greedy algorithm yields a (1 - 1/e)-approximation. It is known that this is optimal both in the value oracle model (where the only access to f is through a black box returning f(S) for a given set S) [G. L. Nemhauser and L. A. Wolsey, Math. Oper. Res., 3 (1978), pp. 177-188] and for explicitly posed instances assuming P not equal NP [U. Feige, J. ACM, 45 (1998), pp. 634-652]. In this paper, we provide a randomized (1 - 1/e)-approximation for any monotone submodular function and an arbitrary matroid. The algorithm works in the value oracle model. Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [J. Combin. Optim., 8 (2004), pp. 307-328], and a continuous greedy process that may be of independent interest. As a special case, our algorithm implies an optimal approximation for the submodular welfare problem in the value oracle model [J. Vondrak, Proceedings of the 38th ACM Symposium on Theory of Computing, 2008, pp. 67-74]. As a second application, we show that the generalized assignment problem (GAP) is also a special case; although the reduction requires |X| to be exponential in the original problem size, we are able to achieve a (1 - 1/e - o(1))-approximation for GAP, simplifying previously known algorithms. Additionally, the reduction enables us to obtain approximation algorithms for variants of GAP with more general constraints.
引用
收藏
页码:1740 / 1766
页数:27
相关论文
共 50 条
  • [21] On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints
    Yu, Kemin
    Li, Min
    Zhou, Yang
    Liu, Qian
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (03)
  • [22] A Semi-streaming Algorithm for Monotone Regularized Submodular Maximization with a Matroid Constraint
    Nong, Qing-Qin
    Wang, Yue
    Gong, Su-Ning
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [23] Streaming algorithm for maximizing a monotone non-submodular function underd-knapsack constraint
    Jiang, Yanjun
    Wang, Yishui
    Xu, Dachuan
    Yang, Ruiqi
    Zhang, Yong
    [J]. OPTIMIZATION LETTERS, 2020, 14 (05) : 1235 - 1248
  • [24] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    Yoshida, Yuichi
    [J]. ALGORITHMICA, 2020, 82 (04) : 1006 - 1032
  • [25] Approximation Guarantees for Deterministic Maximization of Submodular Function with a Matroid Constraint
    Sun, Xin
    Xu, Dachuan
    Guo, Longkun
    Li, Min
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2020, 2020, 12337 : 205 - 214
  • [26] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    Yuichi Yoshida
    [J]. Algorithmica, 2020, 82 : 1006 - 1032
  • [27] Maximizing Submodular plus Supermodular Functions Subject to a Fairness Constraint
    Zhang, Zhenning
    Meng, Kaiqiao
    Du, Donglei
    Zhou, Yang
    [J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (01) : 46 - 55
  • [28] Streaming algorithm for maximizing a monotone non-submodular function under d-knapsack constraint
    Yanjun Jiang
    Yishui Wang
    Dachuan Xu
    Ruiqi Yang
    Yong Zhang
    [J]. Optimization Letters, 2020, 14 : 1235 - 1248
  • [29] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    [J]. ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 438 - 451
  • [30] AN ADAPTIVE ALGORITHM FOR MAXIMIZATION OF NON-SUBMODULAR FUNCTION WITH A MATROID CONSTRAINT
    Sun, Xin
    Xu, Dachuan
    Zhang, Dongmei
    Zhou, Yang
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (03) : 2050 - 2070